2,974 research outputs found

    Variability of Objectively Measured Sedentary Behavior

    Full text link
    The primary purpose of this study was to evaluate variability of sedentary behavior (SB) throughout a 7-d measurement period and to determine if G7 d of SB measurement would be comparable with the typical 7-d measurement period. Methods: Retrospective data from Ball State University_s Clinical Exercise Physiology Laboratory on 293 participants (99 men, 55 T 14 yr, body mass index = 29 T 5 kgImj2; 194 women, 51 T 12 yr, body mass index = 27 T 7 kgImj2) with seven consecutive days of data collected with ActiGraph accelerometers were analyzed (ActiGraph, Fort Walton Beach, FL). Time spent in SB (either G100 counts per minute or G150 counts per minute) and breaks in SB were compared between days and by sex using a two-way repeated-measures ANOVA. Stepwise regression was performed to determine if G7 d of SB measurement were comparable with the 7-d method, using an adjusted R2 of Q0.9 as a criterion for equivalence. Results: There were no differences in daily time spent in SB between the 7 d for all participants. However, there was a significant interaction between sex and days, with women spending less time in SB on both Saturdays and Sundays than men when using the 100 counts per minute cut-point. Stepwise regression showed using any 4 d would be comparable with a 7-d measurement (R2 9 0.90). Conclusions: When assessed over a 7-d measurement period, SB appears to be very stable from day to day, although there may be some small differences in time spent in SB and breaks in SB between men and women, particularly on weekend days. The stepwise regression analysis suggests that a measurement period as short as 4 d could provide comparable data (91% of variance) with a 1-wk assessment. Shorter assessment periods would reduce both researcher and subject burden in data collection

    The impact of stripped Nuclei on the Super-Massive Black Hole number density in the local Universe

    Get PDF
    The recent discovery of super-massive black holes (SMBHs) in the centers of high-mass ultra compact dwarf galaxies (UCDs) suggests that at least some UCDs are the stripped nuclear star clusters of lower mass galaxies. Tracing these former nuclei of stripped galaxies provides a unique way to track the assembly history of a galaxy or galaxy cluster. In this paper we present a new method to estimate how many UCDs host an SMBH in their center and thus are stripped galaxy nuclei. We revisit the dynamical mass measurements that suggest many UCDs have more mass than expected from stellar population estimates, which recent observations have shown is due to the presence of an SMBH. We revise the stellar population mass estimates using a new empirical relation between the mass-to-light ratio (M/L) and metallicity, and use this to predict which UCDs are most likely to host an SMBH. This enables us to calculate the fraction of UCDs that host SMBHs across their entire luminosity range for the first time. We then apply the SMBH occupation fraction to the observed luminosity function of UCDs and estimate that in the Fornax and Virgo cluster alone there should be 69−25+3269^{+32}_{-25} stripped nuclei with SMBHs. This analysis shows that stripped nuclei with SMBHs are almost as common in clusters as present-day galaxy nuclei. We estimate the local SMBH number density in stripped nuclei to 3−8×10−3Mpc−33-8\times10^{-3}Mpc^{-3}, which represents a significant fraction (10-40\%) of the SMBH density in the local Universe. These SMBHs hidden in stripped nuclei will increase expected event rates for tidal disruption events and SMBH-SMBH and SMBH-BH mergers. The existence of numerous stripped nuclei with SMBHs are a direct consequence of hierarchical galaxy formation, but until now their impact on the SMBH density had not been quantified.Comment: 15 pages, 8 Figures, accepted for publication in Ap

    Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms

    Get PDF
    A desirable property of path planning for robotic manipulation is the ability to identify solutions in a sufficiently short amount of time to be usable. This is particularly challenging for the manipulation problem due to the need to plan over high-dimensional configuration spaces and to perform computationally expensive collision checking procedures. Consequently, existing planners take steps to achieve desired solution times at the cost of low quality solutions. This paper presents a planning algorithm that overcomes these difficulties by augmenting the asymptotically-optimal RRT* with a sparse sampling procedure. With the addition of a collision checking procedure that leverages memoization, this approach has the benefit that it quickly identifies low-cost feasible trajectories and takes advantage of subsequent computation time to refine the solution towards an optimal one. We evaluate the algorithm through a series of Monte Carlo simulations of seven, twelve, and fourteen degree of freedom manipulation planning problems in a realistic simulation environment. The results indicate that the proposed approach provides significant improvements in the quality of both the initial solution and the final path, while incurring almost no computational overhead compared to the RRT algorithm. We conclude with a demonstration of our algorithm for single-arm and dual-arm planning on Willow Garage's PR2 robot

    Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS

    Get PDF
    Background: Corticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) ‘in vivo’. Methods: 23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001. Results: In the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration. Conclusions: NODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage

    Strategies to Maximize Science Data Availability for the GOES-R Series of Satellites

    Get PDF
    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the next generation of Untied States geostationary weather satellites. The GOES-R series significantly improves the detection and observation of environmental phenomena that directly affect public safety, protection of property and the economic health and prosperity of the United States and all countries within the western hemisphere. Given the real-time or ''now-casting'' nature of the GOES science gathering mission, any data outage or interruption can reduce warning times or scientific fidelity for critical weather data. GOES-R mission level requirements limit key performance product outages to a total of six hours per year to maximize science data availability. Lower level requirement only allow for 120 minutes of disruption between the spacecraft bus interface to the instruments. This requirement is met using both design features of the satellite and ground system, in addition to operational strategies
    • …
    corecore