6,293 research outputs found

    Voucher Privatization in Russia: First results and experiences

    Get PDF
    The main political problem faced by architects of the Russian VPP was the question of satisfying the interests of all partners taking part in privatization: employees, management, citizens and potential strategic investors. Therefore, a very rigid procedure of shares distribution was introduced in the program. This procedure assumed three rounds: closed subscription round,voucher auctions round and investment tenders round. Length: 47 PagesVoucher, privatization, transition economies

    Learning a Structured Neural Network Policy for a Hopping Task

    Full text link
    In this work we present a method for learning a reactive policy for a simple dynamic locomotion task involving hard impact and switching contacts where we assume the contact location and contact timing to be unknown. To learn such a policy, we use optimal control to optimize a local controller for a fixed environment and contacts. We learn the contact-rich dynamics for our underactuated systems along these trajectories in a sample efficient manner. We use the optimized policies to learn the reactive policy in form of a neural network. Using a new neural network architecture, we are able to preserve more information from the local policy and make its output interpretable in the sense that its output in terms of desired trajectories, feedforward commands and gains can be interpreted. Extensive simulations demonstrate the robustness of the approach to changing environments, outperforming a model-free gradient policy based methods on the same tasks in simulation. Finally, we show that the learned policy can be robustly transferred on a real robot.Comment: IEEE Robotics and Automation Letters 201

    Dense Subgraphs in Random Graphs

    Full text link
    For a constant γ[0,1]\gamma \in[0,1] and a graph GG, let ωγ(G)\omega_{\gamma}(G) be the largest integer kk for which there exists a kk-vertex subgraph of GG with at least γ(k2)\gamma\binom{k}{2} edges. We show that if 0<p<γ<10<p<\gamma<1 then ωγ(Gn,p)\omega_{\gamma}(G_{n,p}) is concentrated on a set of two integers. More precisely, with α(γ,p)=γlogγp+(1γ)log1γ1p\alpha(\gamma,p)=\gamma\log\frac{\gamma}{p}+(1-\gamma)\log\frac{1-\gamma}{1-p}, we show that ωγ(Gn,p)\omega_{\gamma}(G_{n,p}) is one of the two integers closest to 2α(γ,p)(lognloglogn+logeα(γ,p)2)+12\frac{2}{\alpha(\gamma,p)}\big(\log n-\log\log n+\log\frac{e\alpha(\gamma,p)}{2}\big)+\frac{1}{2}, with high probability. While this situation parallels that of cliques in random graphs, a new technique is required to handle the more complicated ways in which these "quasi-cliques" may overlap

    Position control of an industrial robot using an optical measurement system for machining purposes

    Get PDF
    A series of mechanical properties and disturbances limit the accuracy achievable in robotic applications. External control of the end effector position is commonly known as being an appropriate mean to increase accuracy. This paper presents an approach for position control of industrial robots using the pass-through between an industrial CNC and servomotors. A CNC-controlled robot is used together with an external optical measurement system to close the feedback loop of robot end effector and robot controller in order to improve robot accuracy. For short cycle times and implementation reasons a PLC is used for signal processing and control implementation. The relevance of the approach is outlined in experiments. The robot behaviour in free space motion and in machining application is analysed with the optical measurement system and a CMM

    Large scale Micro-Photometry for high resolution pH-characterization during electro-osmotic pumping and modular micro-swimming

    Full text link
    Micro-fluidic pumps as well as artificial micro-swimmers are conveniently realized exploiting phoretic solvent flows based on local gradients of temperature, electrolyte concentration or pH. We here present a facile micro-photometric method for monitoring pH gradients and demonstrate its performance and scope on different experimental situations including an electro-osmotic pump and modular micro-swimmers assembled from ion exchange resin beads and polystyrene colloids. In combination with the present microscope and DSLR camera our method offers a 2 \mu m spatial resolution at video frame rate over a field of view of 3920x2602 \mu m^2. Under optimal conditions we achieve a pH-resolution of 0.05 with about equal contributions from statistical and systematical uncertainties. Our quantitative micro-photometric characterization of pH gradients which develop in time and reach out several mm is anticipated to provide valuable input for reliable modeling and simulations of a large variety of complex flow situations involving pH-gradients including artificial micro-swimmers, microfluidic pumping or even electro-convection.Comment: 5 figures, 15 page
    corecore