76 research outputs found

    Coding, Analysis, Interpretation, and Recognition of Facial Expressions

    Get PDF
    We describe a computer vision system for observing facial motion by using an optimal estimation optical flow method coupled with a geometric and a physical (muscle) model describing the facial structure. Our method produces a reliable parametric representation of the face's independent muscle action groups, as well as an accurate estimate of facial motion. Previous efforts at analysis of facial expression have been based on the Facial Action Coding System (FACS), a representation developed in order to allow human psychologists to code expression from static pictures. To avoid use of this heuristic coding scheme, we have used our computer vision system to probabilistically characterize facial motion and muscle activation in an experimental population, thus deriving a new, more accurate representation of human facial expressions that we call FACS+. We use this new representation for recognition in two different ways. The first method uses the physics-based model directly, by recognizing..

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.Seventh Framework Programme (European Commission) (grant agreement No. 284709

    Bayesian collective learning emerges from heuristic social learning

    Full text link
    Researchers across cognitive science, economics, and evolutionary biology have studied the ubiquitous phenomenon of social learning—the use of information about other people's decisions to make your own. Decision-making with the benefit of the accumulated knowledge of a community can result in superior decisions compared to what people can achieve alone. However, groups of people face two coupled challenges in accumulating knowledge to make good decisions: (1) aggregating information and (2) addressing an informational public goods problem known as the exploration-exploitation dilemma. Here, we show how a Bayesian social sampling model can in principle simultaneously optimally aggregate information and nearly optimally solve the exploration-exploitation dilemma. The key idea we explore is that Bayesian rationality at the level of a population can be implemented through a more simplistic heuristic social learning mechanism at the individual level. This simple individual-level behavioral rule in the context of a group of decision-makers functions as a distributed algorithm that tracks a Bayesian posterior in population-level statistics. We test this model using a large-scale dataset from an online financial trading platform

    Behavioral Indicators on a Mobile Sensing Platform Predict Clinically Validated Psychiatric Symptoms of Mood and Anxiety Disorders

    Get PDF
    Background: There is a critical need for real-time tracking of behavioral indicators of mental disorders. Mobile sensing platforms that objectively and noninvasively collect, store, and analyze behavioral indicators have not yet been clinically validated or scalable. Objective: The aim of our study was to report on models of clinical symptoms for post-traumatic stress disorder (PTSD) and depression derived from a scalable mobile sensing platform. Methods: A total of 73 participants (67% [49/73] male, 48% [35/73] non-Hispanic white, 33% [24/73] veteran status) who reported at least one symptom of PTSD or depression completed a 12-week field trial. Behavioral indicators were collected through the noninvasive mobile sensing platform on participants’ mobile phones. Clinical symptoms were measured through validated clinical interviews with a licensed clinical social worker. A combination hypothesis and data-driven approach was used to derive key features for modeling symptoms, including the sum of outgoing calls, count of unique numbers texted, absolute distance traveled, dynamic variation of the voice, speaking rate, and voice quality. Participants also reported ease of use and data sharing concerns. Results: Behavioral indicators predicted clinically assessed symptoms of depression and PTSD (cross-validated area under the curve [AUC] for depressed mood=.74, fatigue=.56, interest in activities=.75, and social connectedness=.83). Participants reported comfort sharing individual data with physicians (Mean 3.08, SD 1.22), mental health providers (Mean 3.25, SD 1.39), and medical researchers (Mean 3.03, SD 1.36). Conclusions: Behavioral indicators passively collected through a mobile sensing platform predicted symptoms of depression and PTSD. The use of mobile sensing platforms can provide clinically validated behavioral indicators in real time; however, further validation of these models and this platform in large clinical samples is needed.United States. Defense Advanced Research Projects Agency (contract N66001-11-C-4094

    Measuring the predictability of life outcomes with a scientific mass collaboration.

    Get PDF
    How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences

    Fractal-based description

    No full text
    This paper addresses the problems of (1) representing natural shapes such as mountains, trees and clouds, and (2) computing such a description from image data. In order to solve these problems we must be able to relate natural surfaces to their images; this requires a good model of natural surface shapes. Fractal functions are good a choice for modeling natural surfaces because (1) many physical processes produce a fractal surface shape, (2) fractals are widely used as a graphics tool for generating naturallooking shapes, and (3) a survey of natural imagery has shown that the 3-D fractal surface model, transformed by the image formation process, furnishes an accurate description of both textured and shaded image regions. This characterization of image regions has been shown to be stable over transformations of scale and linear transforms of intensity. Much work has been accomplished that is relevant to computing 3-D information from the image data, and the computation of a 3-D fractal-based representation from actual image data has been demonstrated using an image of a mountain. This example shows the potential of a fractal-based representation for efficiently computing good 3-D representations of natural shapes, including such seemingly-difficult cases as mountains, clumps of leaves and clouds.
    • …
    corecore