551 research outputs found

    Extinction in Lotka-Volterra model

    Full text link
    Competitive birth-death processes often exhibit an oscillatory behavior. We investigate a particular case where the oscillation cycles are marginally stable on the mean-field level. An iconic example of such a system is the Lotka-Volterra model of predator-prey competition. Fluctuation effects due to discreteness of the populations destroy the mean-field stability and eventually drive the system toward extinction of one or both species. We show that the corresponding extinction time scales as a certain power-law of the population sizes. This behavior should be contrasted with the extinction of models stable in the mean-field approximation. In the latter case the extinction time scales exponentially with size.Comment: 11 pages, 17 figure

    A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    Full text link
    We present the first results from a detailed spectral-timing analysis of a long (∌\sim130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3−-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ∌\sim1.5 keV, iron Kα_{\alpha} emission complex at ∌\sim6−-7 keV and a `Compton hump' at ∌\sim15−-30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2−6]×10−5[2-6]\times10^{-5} Hz), the power-law continuum dominated 1.5−-5 keV band lags behind the reflection dominated 0.3−-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1−2]×10−4[1-2]\times10^{-4} Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk~1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.Comment: 23 pages, 19 figures, 4 tables, Published in MNRA

    Discovery of soft and hard X-ray time lags in low-mass AGNs

    Get PDF
    The scaling relations between the black hole (BH) mass and soft lag properties for both active galactic nuclei (AGNs) and BH X-ray binaries (BHXRBs) suggest the same underlying physical mechanism at work in accreting BH systems spanning a broad range of mass. However, the low-mass end of AGNs has never been explored in detail. In this work, we extend the existing scaling relations to lower-mass AGNs, which serve as anchors between the normal-mass AGNs and BHXRBs. For this purpose, we construct a sample of low-mass AGNs (MBH<3×106M⊙M_{\rm BH}<3\times 10^{6} M_{\rm \odot}) from the XMM-Newton archive and measure frequency-resolved time delays between the soft (0.3-1 keV) and hard (1-4 keV) X-ray emissions. We report that the soft band lags behind the hard band emission at high frequencies ∌[1.3−2.6]×10−3\sim[1.3-2.6]\times 10^{-3} Hz, which is interpreted as a sign of reverberation from the inner accretion disc in response to the direct coronal emission. At low frequencies (∌[3−8]×10−4\sim[3-8]\times 10^{-4} Hz), the hard band lags behind the soft band variations, which we explain in the context of the inward propagation of luminosity fluctuations through the corona. Assuming a lamppost geometry for the corona, we find that the X-ray source of the sample extends at an average height and radius of ∌10rg\sim 10r_{\rm g} and ∌6rg\sim 6r_{\rm g}, respectively. Our results confirm that the scaling relations between the BH mass and soft lag amplitude/frequency derived for higher-mass AGNs can safely extrapolate to lower-mass AGNs, and the accretion process is indeed independent of the BH mass.Comment: 11 pages, 5 figures, 4 tables, Published in MNRA

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→ΌΜΌ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke
    • 

    corecore