1,447 research outputs found

    Robust Fast Direct Integral Equation Solver for Quasi-Periodic Scattering Problems with a Large Number of Layers

    Get PDF
    We present a new boundary integral formulation for time-harmonic wave diffraction from two-dimensional structures with many layers of arbitrary periodic shape, such as multilayer dielectric gratings in TM polarization. Our scheme is robust at all scattering parameters, unlike the conventional quasi-periodic Green’s function method which fails whenever any of the layers approaches a Wood anomaly. We achieve this by a decomposition into near- and far-field contributions. The former uses the free-space Green’s function in a second-kind integral equation on one period of the material interfaces and their immediate left and right neighbors; the latter uses proxy point sources and small least-squares solves (Schur complements) to represent the remaining contribution from distant copies. By using high-order discretization on interfaces (including those with corners), the number of unknowns per layer is kept small. We achieve overall linear complexity in the number of layers, by direct solution of the resulting block tridiagonal system. For device characterization we present an efficient method to sweep over multiple incident angles, and show a 25× speedup over solving each angle independently. We solve the scattering from a 1000-layer structure with 3 × 105 unknowns to 9-digit accuracy in 2.5 minutes on a desktop workstation

    Simulations of MHD Turbulence in a Strongly Magnetized Medium

    Full text link
    We analyze 3D numerical simulations of driven incompressible magnetohydrodynamic (MHD) turbulence in a periodic box threaded by a moderately strong external magnetic field. We sum over nonlinear interactions within Fourier wavebands and find that the time scale for the energy cascade is consistent with the Goldreich-Sridhar model of strong MHD turbulence. Using higher order longitudinal structure functions we show that the turbulent motions in the plane perpendicular to the local mean magnetic field are similar to ordinary hydrodynamic turbulence while motions parallel to the field are consistent with a scaling correction which arises from the eddy anisotropy. We present the structure tensor describing velocity statistics of Alfvenic and pseudo-Alfvenic turbulence. Finally, we confirm that an imbalance of energy moving up and down magnetic field lines leads to a slow decay of turbulent motions and speculate that this imbalance is common in the interstellar medium where injection of energy is intermittent both in time and space.Comment: ApJ accepted, 29 pages, 10 figures; some revisions, new figure

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System

    MHD Turbulent Mixing Layers: Equilibrium Cooling Models

    Get PDF
    We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.Comment: 10 pages, 10 Figures (2 in color), Accepted for publication on Astrophysical Journa

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale

    High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire

    Get PDF
    The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 _C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 _C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 _ 10mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to grow graphene on sapphire at substrate temperatures between 1000 and 1650 _C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moir_e pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moir_e pattern to the commensurate growth of crystalline graphene on h-BN

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam
    corecore