4,650 research outputs found
Cavity optoelectromechanical regenerative amplification
Cavity optoelectromechanical regenerative amplification is demonstrated. An
optical cavity enhances mechanical transduction, allowing sensitive measurement
even for heavy oscillators. A 27.3 MHz mechanical mode of a microtoroid was
linewidth narrowed to 6.6\pm1.4 mHz, 30 times smaller than previously achieved
with radiation pressure driving in such a system. These results may have
applications in areas such as ultrasensitive optomechanical mass spectroscopy
Tropism, Cytotoxicity, and Inflammatory Properties of Two Envelope Genes of Murine Leukemia Virus Type-Endogenous Retroviruses of C57BL/6J Mice
Envelope (env) proteins of certain endogenous retroviruses (ERVs) participate in various pathophysiological processes. In this study, we characterized pathophysiologic properties of two murine leukemia virus-type ERV (MuLV-ERV) env genes cloned from the ovary of C57BL/6J mice. The two env genes (named ENVOV1 and ENVOV2), with 1,926 bp coding region, originated from two MuLV-ERV loci on chromosomes 8 and 18, respectively. ENVOV1 and ENVOV2 were ~75 kDa and predominantly expressed on the cell membrane. They were capable of producing pseudotype murine leukemia virus virions. Tropism trait and infectivity of ENVOV2 were similar to the polytropic env; however, ENVOV1 had very low level of infectivity. Overexpression of ENVOV2, but not ENVOV1, exerted cytotoxic effects and induced expression of COX-2, IL-1β, IL-6, and iNOS. These findings suggest that the ENVOV1 and ENVOV2 are capable of serving as an env protein for virion assembly, and they exert differential cytotoxicity and modulation of inflammatory mediators
Coronavirus proteins as ion channels: Current and potential research
Coronavirus (CoV) outbreaks have recently emerged as a global public health threat due to their exceptional zoonotic potential - a feature arising from their ability to infect a diverse range of potential hosts combined with their high capacity for mutation and recombination. After Severe Acute Respiratory Syndrome (SARS) CoV-1 in 2003 and Middle East Respiratory Syndrome (MERS) CoV in 2012, with the current SARS-CoV-2 pandemic we are now in the midst of the third deadly international CoV outbreak in less than 20 years. Coronavirus outbreaks present a critical threat to global public health and an urgent necessity for therapeutic options. Here, we critically examine the current evidence for ion channel activity in CoV proteins and the potential for modulation as a therapeutic approach
Prevalent de novo somatic mutations in superantigen genes of mouse mammary tumor viruses in the genome of C57BL/6J mice and its potential implication in the immune system
<p>Abstract</p> <p>Background</p> <p>Superantigens (SAgs) of mouse mammary tumor viruses (MMTVs) play a crucial role in T cell selection in the thymus in a T cell receptor (TCR) Vβ-specific manner and SAgs presented by B cells activate T cells in the periphery. The peripheral T cell repertoire is dynamically shaped by the steady induction of T cell tolerance against self antigens throughout the lifespan. We hypothesize that <it>de novo </it>somatic mutation of endogenous MMTV SAgs contributes to the modulation of the peripheral T cell repertoire.</p> <p>Results</p> <p>SAg coding sequences were cloned from the genomic DNAs and/or cDNAs of various tissues of female C57BL/6J mice. A total of 68 unique SAg sequences (54 translated sequences) were identified from the genomic DNAs of liver, lungs, and bone marrow, which are presumed to harbor only three endogenous MMTV loci (<it>Mtv-8</it>, <it>Mtv-9</it>, and <it>Mtv-17</it>). Similarly, 69 unique SAg sequences (58 translated sequences) were cloned from the cDNAs of 18 different tissues. Examination of putative TCR Vβ specificity suggested that some of the SAg isoforms identified in this study have Vβ specificities different from the reference SAgs of <it>Mtv-8</it>, <it>Mtv-9</it>, or <it>Mtv-17</it>.</p> <p>Conclusion</p> <p>The pool of diverse SAg isoforms, generated by <it>de novo </it>somatic mutation, may play a role in the shaping of the peripheral T cell repertoire including the autoimmune T cell population.</p
Genome-wide expression profiles of endogenous retroviruses in lymphoid tissues and their biological properties
AbstractEndogenous retroviruses (ERVs) constitute approximately 8–10% of the human and mouse genome. Some autoimmune diseases are attributed to the altered expression of ERVs. In this study, we examined the ERV expression profiles in lymphoid tissues and analyzed their biological properties. Tissues (spleen, thymus, and lymph nodes [axillary, inguinal, and mesenteric]) from C57BL/6J mice were analyzed for differential murine ERV (MuERV) expression by RT-PCR examination of polymorphic U3 sequences. Each tissue had a unique profile of MuERV expression. A genomic map identifying 60 putative MuERVs was established using 22 unique U3s as probes and their biological properties (primer binding site, coding potential, transcription regulatory element, tropism, recombination event, and integration age) were characterized. Interestingly, 12 putative MuERVs retained intact coding potentials for all three polypeptides essential for virus assembly and replication. We suggest that MuERV expression is differentially regulated in conjunction with the transcriptional environment of individual lymphoid tissues
Brewster-angle measurements of sea-surface reflectance using a high resolution spectroradiometer
This paper describes the design, construction and testing of a ship-borne spectroradiometer based on an imaging spectrograph and cooled CCD array with a wavelength range of 350-800 nm and 4 nm spectral sampling. The instrument had a minimum spectral acquisition time of 0.1 s, but in practice data were collected over periods of 10 s to allow averaging of wave effects. It was mounted on a ship's superstructure so that it viewed the sea surface from a height of several metres at the Brewster angle (53 degrees) through a linear polarizing filter. Comparison of sea-leaving spectra acquired with the polarizer oriented horizontally and vertically enabled estimation of the spectral composition of sky light reflected directly from the sea surface. A semi-empirical correction procedure was devised for retrieving water-leaving radiance spectra from these measurements while minimizing the influence of reflected sky light. Sea trials indicated that reflectance spectra obtained by this method were consistent with the results of radiance transfer modelling of case 2 waters with similar concentrations of chlorophyll and coloured dissolved organic matter. Surface reflectance signatures measured at three locations containing blooms of different phytoplankton species were easily discriminated and the instrument was sufficiently sensitive to detect solar-stimulated fluorescence from surface chlorophyll concentrations down to 1 mg m−3
Sublimate: State-Changing Virtual and Physical Rendering to Augment Interaction with Shape Displays
Recent research in 3D user interfaces pushes towards immersive graphics and actuated shape displays. Our work explores the hybrid of these directions, and we introduce sublimation and deposition, as metaphors for the transitions between physical and virtual states. We discuss how digital models, handles and controls can be interacted with as virtual 3D graphics or dynamic physical shapes, and how user interfaces can rapidly and fluidly switch between those representations. To explore this space, we developed two systems that integrate actuated shape displays and augmented reality (AR) for co-located physical shapes and 3D graphics. Our spatial optical see-through display provides a single user with head-tracked stereoscopic augmentation, whereas our handheld devices enable multi-user interaction through video seethrough AR. We describe interaction techniques and applications that explore 3D interaction for these new modalities. We conclude by discussing the results from a user study that show how freehand interaction with physical shape displays and co-located graphics can outperform wand-based interaction with virtual 3D graphics.National Science Foundation (U.S.) (Graduate Research Fellowship Grant 1122374
Evidence for a New Excitation at the Interface Between a High-Tc Superconductor and a Topological Insulator
High-temperature superconductors exhibit a wide variety of novel excitations.
If contacted with a topological insulator, the lifting of spin rotation
symmetry in the surface states can lead to the emergence of unconventional
superconductivity and novel particles. In pursuit of this possibility, we
fabricated high critical-temperature (Tc ~ 85 K) superconductor/topological
insulator (Bi2Sr2CaCu2O8+delta/Bi2Te2Se) junctions. Below 75 K, a zero-bias
conductance peak (ZBCP) emerges in the differential conductance spectra of this
junction. The magnitude of the ZBCP is suppressed at the same rate for magnetic
fields applied parallel or perpendicular to the junction. Furthermore, it can
still be observed and does not split up to at least 8.5 T. The temperature and
magnetic field dependence of the excitation we observe appears to fall outside
the known paradigms for a ZBCP
- …