4,136 research outputs found
Recommended from our members
Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries.
The interactions between charge carriers and electrode structures represent one of the most important considerations in the search for new energy storage devices. Currently, ionic bonding dominates the battery chemistry. Here we report the reversible insertion of a large molecular dication, methyl viologen, into the crystal structure of an aromatic solid electrode, 3,4,9,10-perylenetetracarboxylic dianhydride. This is the largest insertion charge carrier when non-solvated ever reported for batteries; surprisingly, the kinetic properties of the (de)insertion of methyl viologen are excellent with 60% of capacity retained when the current rate is increased from 100 mA g-1 to 2000 mA g-1. Characterization reveals that the insertion of methyl viologen causes phase transformation of the organic host, and embodies guest-host chemical bonding. First-principles density functional theory calculations suggest strong guest-host interaction beyond the pure ionic bonding, where a large extent of covalency may exist. This study extends the boundary of battery chemistry to large molecular ions as charge carriers and also highlights the electrochemical assembly of a supramolecular system
Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC
Magnetic confinement of electron and photon radiotherapy dose: A Monte Carlo simulation with a nonuniform longitudinal magnetic field
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135106/1/mp1091.pd
Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1
Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr83 and Glu73, respectively. When Glu73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu73 residue
Comments on Supergravity Description of S-branes
This is a note on the coupled supergravity-tachyon matter system, which has
been earlier proposed as a candidate for the effective space-time description
of S-branes. In particular, we study an ansatz with the maximal
ISO(p+1)xSO(8-p,1) symmetry, for general brane dimensionality p and homogeneous
brane distribution in transverse space \rho_\perp. A simple application of
singularity theorems shows that (for p \le 7) the most general solution with
these symmetries is always singular. (This invalidates a recent claim in the
literature.) We include a few general comments about the possibility of
describing the decay of unstable D-branes in purely gravitational terms.Comment: 19 pages, refs adde
Electrical Control of Plasmon Resonance with Graphene
Surface plasmon, with its unique capability to concentrate light into
sub-wavelength volume, has enabled great advances in photon science, ranging
from nano-antenna and single-molecule Raman scattering to plasmonic waveguide
and metamaterials. In many applications it is desirable to control the surface
plasmon resonance in situ with electric field. Graphene, with its unique
tunable optical properties, provides an ideal material to integrate with
nanometallic structures for realizing such control. Here we demonstrate
effective modulation of the plasmon resonance in a model system composed of
hybrid graphene-gold nanorod structure. Upon electrical gating the strong
optical transitions in graphene can be switched on and off, which leads to
significant modulation of both the resonance frequency and quality factor of
plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as
exemplified by this combination of graphene and gold nanorod, provide a general
and powerful way for electrical control of plasmon resonances. It holds promise
for novel active optical devices and plasmonic circuits at the deep
subwavelength scale
Multiple functional neurosteroid binding sites on GABAA receptors
Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry (MS), we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1β3 GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 (labeled residues α1-N408, Y415) and β3 (labeled residue β3-Y442) subunits, adjacent to the extracellular domains (ECDs). An intersubunit site (labeled residues β3-L294 and G308) in the interface between the β3(+) and α1(-) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies of receptors with mutations based on these predictions (α1-V227W, N408A/Y411F, and Q242L) indicate that both the α1 intrasubunit and β3-α1 intersubunit sites are critical for neurosteroid action
- …