50 research outputs found

    Energy Method to Obtain Approximate Solutions of Strongly Nonlinear Oscillators

    Get PDF
    We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion

    Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms

    Get PDF
    In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others

    Fiber Laser Microcutting of AISI 316L Stainless Steel Tubes- influence of Pulse Energy and Spot Overlap on Back Wall Dross

    Get PDF
    AbstractThe design of coronary stents imposes high demands in terms of dimensional tolerance and surface finish. These devices are manufactured by laser microcutting of miniature tubes in materials such as stainless steel, cobalt chromium alloys and Nitinol. The work presented here is focused on fiber laser microcutting for coronary struts in AISI 316L stainless steel. This work studies the influence of gases such compressed air and argon passing through the tube in order to drag molten material while laser microcutting is performed. The experimental work studies the influence of beam spot overlap and pulse energy on back wall dross and average surface roughness, using response surface methodology. The results indicate that the introduction of compressed air or argon gas is a relevant method to reduce the amount of dross adhered in the back wall of the miniature tube

    Stress-Softening and Residual Strain Effects in Suture Materials

    Get PDF
    This work focuses on the experimental characterization of suture material samples of MonoPlus, Monosyn, polyglycolic acid, polydioxanone 2–0, polydioxanone 4–0, poly(glycolide-co-epsilon-caprolactone), nylon, and polypropylene when subjected to cyclic loading and unloading conditions. It is found that all tested suture materials exhibit stress-softening and residual strain effects related to the microstructural material damage upon deformation from the natural, undistorted state of the virgin suture material. To predict experimental observations, a new constitutive material model that takes into account stress-softening and residual strain effects is developed. The basis of this model is the inclusion of a phenomenological nonmonotonous softening function that depends on the strain intensity between loading and unloading cycles. The theory is illustrated by modifying the non-Gaussian average-stretch, full-network model to capture stress-softening and residual strains by using pseudoelasticity concepts. It is shown that results obtained from theoretical simulations compare well with suture material experimental data

    Lyapunov Equivalent Representation Form of Forced, Damped, Nonlinear, Two Degree-of-Freedom Systems

    No full text
    The aim of this paper focuses on finding equivalent representation forms of forced, damped, two degree-of-freedom, nonlinear systems in the sense of Lyapunov by using a nonlinear transformation approach that provides decoupled, forced, damped, nonlinear equations of the Duffing type, under the assumption that the driving frequency and the external forces are equal in both systems. The values of Lyapunov characteristic exponents (LCEs), Lyapunov largest exponents (LLE), and time-amplitude and frequency-amplitude curves computed from numerical integration solutions, indicate that the decoupled Duffing-type equations are equivalent, in the sense of Lyapunov, to the original dynamic system, since both set of motion equations tend to have the same qualitative and quantitative behaviors

    Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    No full text
    We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM) that is based on the homotopy perturbation method (HPM) and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM). At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves

    Accurate Solutions of Conservative Nonlinear Oscillators by the Enhanced Cubication Method

    No full text
    The enhanced cubication method is applied to develop approximate solutions for the most common nonlinear oscillators found in the literature. It is shown that this procedure leads to amplitude-time response curves and angular frequency values with maximum relative errors lower than those found by previously developed approximate solutions

    Energy Method to Obtain Approximate Solutions of Strongly Nonlinear Oscillators

    No full text
    We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion
    corecore