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a b s t r a c t

A rational elliptic balance method is introduced to obtain exact and approximate solutions
of nonlinear oscillators by using Jacobi elliptic functions. To illustrate the applicability
of the proposed rational elliptic forms in the solution of nonlinear oscillators, we first
investigate the exact solution of the non-homogenous, undamped Duffing equation. Then,
we introduce first and second order rational elliptic form solutions to obtain approximate
solutions of two nonlinear oscillators. At the end of the paper, we compare the numerical
integration values of the angular frequencies with approximate solution results, based on
the proposed rational elliptic balance method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In general, the exact solution of nonlinear oscillatory systems are unknown and hence, numerical integration, pertur-
bation methods and nonperturbative techniques have been applied to obtain their approximate solutions. These methods
are discussed in a great many papers, so we shall not elaborate further. See [1–5], for example. Many additional references
dealing with different approaches for approximating solutions to nonlinear oscillatory systems are provided in these arti-
cles. Here we introduce an approach based on rational Jacobi elliptic functions to obtain exact and approximate solutions of
strongly nonlinear oscillators by following a procedure similar to that of the rational harmonic balancemethod that provides
a general framework for determining higher order corrections [6]. Mickens and Semwogerere showed that the rational har-
monic balance functional form has Fourier coefficients that decrease exponentially [7]. They also concluded that the rational
harmonic balance representation should provide accurate results for oscillators of the form

d2x
dt2
+ f (x) = 0, (1)

with initial conditions

x(0) = x10; ẋ(0) = 0 (2)

where x is the system displacement, and f (x) is the restoring force. Sarma and Rao introduced a modified rational form to
consider mixed-parity restoring forces for the Duffing equation and found good agreement between approximate and ex-
act angular frequency values [8]. In accordance with these results, Mickens concluded that the inappropriate choice of the
rational form can lead to large errors in the determination of the angular frequency for periodic solutions of Eq. (1) [7].

∗ Corresponding author. Tel.: +52 81 8359 1699.
E-mail addresses: aelias@itesm.mx (A. Elías-Zúñiga), ciro.rodriguez@itesm.mx (C.A. Rodríguez), oscar.martinez@itesm.mx (O. Martínez Romero).

1 Department of Mechanical Engineering.
2 Center for Innovation in Design and Technology.

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.06.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82255309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:aelias@itesm.mx
mailto:ciro.rodriguez@itesm.mx
mailto:oscar.martinez@itesm.mx
http://dx.doi.org/10.1016/j.camwa.2010.06.023


1410 A. Elías-Zúñiga et al. / Computers and Mathematics with Applications 60 (2010) 1409–1420

On the other hand, Beléndez et al. in [9] assumed that f (x) is an odd function and used a rational form

x(τ ) =
x10(1+ c0) cos τ
1+ c0 cos 2τ

, (3)

to solve Eq. (1). Here, τ = ωt and c0 is an undetermined constant that need to be determined by applying the rational
harmonic balance method and must satisfied the condition |c0| � 1. In an attempt to provide better solution methodology,
Beléndez et al. used a modified rational harmonic balance method to solve the Duffing oscillator by introducing the new
independent variable τ to ensure that the solution of Eq. (1) is a periodic function of τ with period 2π with results that
agree well with the exact solution [10].
In this paper we do not introduce a new independent variable for (1) however, we consider that f (x) can be either an odd

or even function of x and use rational form solutions based on Jacobi elliptic functions instead of trigonometric ones [11].
The main motivation for this assumption comes from the fact that the mixed-parity Helmholtz–Duffing oscillator:

ẍ+ Ax+ B1x2 + εx3 + D1 = 0 (4)

has an exact solution of the form [12]

x(t) =
a− b+ c(a+ b)cn(ωt + φ, k2)

1+ ccn (ωt + φ, k2)
. (5)

Here, A, B1, ε, and D1 are system constant parameters, cn (ωt + φ, k2) is the cn Jacobian elliptic function that has a period
in ωt equal to 4K(k2), and K(k2) is the complete elliptic integral of the first kind for the modulus k, ω is the frequency of
oscillation, φ, a, b, and c are unknown constants that are determined by substituting Eq. (5) into Eq. (3) and by using the
initial conditions (3). The solution of Eq. (4) is discussed in detail in [12] therefore, we shall not elaborate any further on it.

2. Exact solution based on rational Jacobi elliptic forms

Since the aim of this paper is to obtain approximate solutions of nonlinear oscillators based on the usage of rational Jacobi
elliptic forms, we first investigate the solution of the non-homogeneous Duffing equation that describes the free vibrational
motion of a vehicular body supported by rubber shear mountings with quadratic response [13,14]:

ẍ+ x+ εx3 = −F0 (6)

with initial conditions

x(0) = x10; ẋ(0) = 0. (7)

Here the dots denote the derivative with respect to t, x represents the system displacement, ε is a nonlinear material
parameter and F0 is a constant. We next assume that the exact solution of Eq. (6) is prescribed as an elliptic rational function
of the form:

x(t) =
a+ bcn (ωt + φ, k2)
1+ ccn (ωt + φ, k2)

, (8)

where a, b, c, k, ω, φ are unknown constants. Substituting Eq. (8) into Eq. (6) and using the elliptic balance method, we
obtain:

a+ F0 + a3ε + 2c(b− ac)(k2 − 1)ω2 + cn (ωt + φ, k2)(b+ 2ac + 3cF0 + 3a2bε
+(b− ac)(2k2 − 1)ω2)+ cn2(ωt + φ, k2)(2bc + ac2 + 3c2F0 + 3ab2ε

+c(ac − b)(2k2 − 1)ω2)+ cn3(ωt + φ, k2)(bc2 + c3F0 + b3ε − 2(b− ac)k2ω2) = 0. (9)

This Eq. (9) holds for all time t , if and only if, each of its coefficient terms vanish i.e.

a+ F0 + a3ε + 2c(b− ac)(k2 − 1)ω2 = 0, (10)

b+ 2ac + 3cF0 + 3a2bε + (b− ac)(2k2 − 1)ω2 = 0, (11)

2bc + ac2 + 3c2F0 + 3ab2ε − c(b− ac)(2k2 − 1)ω2 = 0, (12)

bc2 + c3F0 + b3ε − 2(b− ac)k2ω2 = 0. (13)

Then, the modulus k and the frequency ω of the elliptic function are given by the following equations:

k2 =
a+ 4bc + 2ac2 + F0 + 6c2F0 + a3ε + 6ab2ε
2(2bc + F0 + 3c2F0 + a3ε + a(1+ c2 + 3b2ε))

, (14)

ω2 =
2bc + F0 + 3c2F0 + a3ε + a(1+ c2 + 3b2ε)

c(b− ac)
. (15)
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From the initial conditions given by Eq. (7) and by using Eq. (8), we have that φ = 0 and

c =
a+ b− x10
x10

. (16)

To obtain b, we multiply Eq. (11) by c and add this to Eq. (12) and after solving for b, we get

b =
−(a− x10)(2a+ 4F0 + x10 + a2εx10 ± x10

√
1− 2a(a+ 4F0)ε + a4ε2)

2(2F0 + x10 + a(1+ εx10(a+ x10)))
. (17)

Then,we add Eqs. (11) and (13) and use the expressions for k, ω, c , and b given by Eqs. (14)–(17), to get after several algebraic
operations that

(a+ F0 + a3)3[a+ 2F0 + x10 + a2εx10 + aεx210]{a
6F0ε2 + a5ε(4F0εx10 + (1+ εx210)

2)

− 5a4F0ε − 10a3F 20 ε + 5a
2F0εx10(4F0 + 2x10 + εx310)− a(2F

2
0 (1+ 8εx

2
10)+ (2+ εx

2
10)

× (x10 + εx310)
2
+ 4F0(x10 + 4εx310 + 2ε

2x510))− F0(2F
2
0 + 4F0x10 + 2x

2
10 + εx

4
10)} = 0. (18)

Notice that Eq. (18) is a twenty-third order polynomial equation for the constant a. However, to have real values for the
modulus k and the frequency ω of the Jacobi elliptic function, we only need to use the following sixth-order polynomial
equation to determine the value of a i.e.:

a6F0ε2 + a5ε(4F0εx10 + (1+ εx210)
2)− 5a4F0ε − 10a3F 20 ε + 5a

2F0εx10(4F0
+ 2x10 + εx310)− a(2F

2
0 (1+ 8εx

2
10)+ (2+ εx

2
10)(x10 + εx

3
10)
2
+ 4F0(x10 + 4εx310

+ 2ε2x510))− F0(2F
2
0 + 4F0x10 + 2x

2
10 + εx

4
10) = 0. (19)

According to our derived exact solution of Eq. (6), which has not been previously explored in the present context, it is evident
that the higher elliptic terms in Eq. (8) have small amplitudes relative to the leading terms. In other words, the condition
|b| > |a| > |c| is satisfied. The same conclusion holds for the exact solution of Eq. (4) [12]. These conditions agree well
with those of the harmonic balance method [6]. Once the constants a, b, c, k, ω are found by using Eqs. (14)–(19), we may
compute the corresponding exact period of oscillation T of the Duffing oscillator (6) which is given by

T =
4K(k2)
ω

. (20)

Since elliptic rational forms provide the exact solution to some nonlinear oscillators i.e., those given by Eqs. (4) and
(6) [12,15], it is clear that by considering approximate solutions based on rational elliptic forms, we could get approximate
expressions with a high degree of accuracy. In the next section, we shall investigate the approximate solution of two
nonlinear oscillators by applying the rational elliptic balance method.

3. Approximate solutions of two nonlinear oscillators

In our study, we first derive the solution of a nonlinear singular oscillator that describes the path x of the electrons in
plasma physics [16,17] and show how our proposed rational elliptic balance solution provides a high degree of accuracy
when compared to the exact angular frequency value. Then, we explore the solution of a nonlinear oscillator in which the
restoring force has a rational-like form.

3.1. Nonlinear singular oscillator

Here, we obtain the approximate analytical solution of the following nonlinear singular oscillator

ẍ+
ε

x
= 0, (21)

where x describes the path of the electrons in plasma physics and the parameter ε in Eq. (21) does not need not to be small
i.e., 0 < ε <∞. Next, we assume that the approximate analytical solution to Eq. (21) is of the form

x(t) =
acn (ω22t + φ, k222)

{1+ bcn2(ω22t + φ, k222)}
, (22)

where a, b, k22, φ, and ω22 are constants that need to be determined. Substituting Eq. (22) into Eq. (21), yields

ε + cn2(ω22t + φ, k222)(4bε − a
2ω22 − 6a

2bω222 + 2a
2k222ω

2
22 + 6a

2bk222ω
2
22)

+ cn4(ω22t + φ, k222)(6b
2ε + 6a2bω222 + 2a

2b2ω222 − 2a
2k222ω

2
22 − 12a

2bk222ω
2
22

−2a2b2k222ω
2
22)+ bcn

8(ω22t + φ, k222)(4b
2ε − a2bω222 + 6a

2k222ω
2
22 + 2a

2bk222ω
2
22)

+ b4εcn8(ω22t + φ, k222) = 0. (23)
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Using the transformation cosϕ2 = cn (ω22t + φ, k222), we can write Eq. (23) in the following form

(128+ b(256+ b(288+ 5b(32+ 7b))))ε − 8a2(8+ 12b− 7b2 + 2k2(b(b− 3)− 2))ω222
+ 4(2b(2+ b)(16+ b(16+ 7b))ε − a2(16− 17b2 + 2b(3+ b)k222)ω

2
22) cos 2ϕ2

+ 4(b2(24+ b(24+ 7b))ε + 2a2(b(12+ b)+ 2(−2+ (−3+ b)b)k222)ω
2
22) cos 4ϕ2

+4b(2b2(2+ b)ε + a2(−b+ 2(3+ b)k222)ω
2
22) cos 6ϕ2 + b

4ε cos 8ϕ2 = 0. (24)

Setting the coefficients of the constant terms and the coefficients of cos 2ϕ2 to zero provides the following expressions for
k22 and ω22:

k222 =
2048− 9856b2 − 11264b3 − 5616b4 − 704b5 + 189b6

2b(77b5 − 121b4 − 1664b3 − 3872b2 − 3968b− 1408)
, (25)

ω222 =
b(1408+ 3968b+ 3872b2 + 1664b3 + 121b4 − 77b5)ε

a2(256− 576b− 48b2 − 480b3 + 80b4)
. (26)

By considering the initial conditions given by Eq. (7), we have from Eq. (22) that φ = 0 and

b =
a− x10
x10

. (27)

The remaining equation needed to determine the constant a of Eq. (22) is obtained by setting the coefficients of the term
cos 4ϕ to zero in Eq. (24). This yields:

7a8 − 182a7x10 + 2093a6x210 − 2864a
5x310 + 53a

4x410 − 3998a
3x510

+ 11651a2x610 − 5468ax
7
10 + 756x

8
10 = 0. (28)

This is an eighth-order polynomial equation that has the following roots:

a = x10(−0.9233± 1.1529i); a = x10(0.2746± 0.0767i);
a = x10(1.4373± 0.5194i); a = x10(12.2114± 10.5597i), (29)

where i =
√
−1. Since we are expecting real values for the constant parameters of Eq. (44), we now examine the coefficient

of the harmonic term cos 6ϕ2 and explore if a can have real values. Then, setting to zero the coefficients of cos 6ϕ2 and by
recalling Eqs. (A.5) and (A.7), we can get the following polynomial expression for the parameter a that depends on the initial
condition x10:

3a7 − 60a6x10 + 550a5x210 − 380a
4x310 − 229a

3x410 + 128a
2x510 − 558ax

6
10 + 192x

7
10 = 0. (30)

This polynomial equation (30) has the roots:

a = x10(9.5987± 8.7306i); a = x10(0.068± 0.8911);
a = 1.3759x10; a = −1.0415x10; a = 0.332x10. (31)

We have three real roots for a but only the root a = 1.3759x10 satisfies the condition |a| > |b| [11]. By taking a = 1.3759x10,
we can compute from Eqs. (25)–(27) the values of the constant parameters b, k22, and ω22:

b = 0.3759x10; k222 = 0.0226; ω22 =
1.26079

√
ε

x10
. (32)

With these parameter values, we next use Eq. (20) to compute the analytical approximate circular frequencyΩ22 from the
following equation

Ω22 =
πω22

2K(k222)
=
1.25361

√
ε

x10
. (33)

This frequency value is 0.0247% bigger than the exact angular frequency value

ωex(x10) =
1.2533131

√
ε

x10
(34)

determined by Mickens in [18]. The percentage error of 0.0247% is significantly lower than the error of 1.6% obtained by
Ramos in [19], 1.275% obtained by Beléndez et al. in [20], or 0.4% obtained by Belendez et al. in [21]. This result shows
that our proposed rational Jacobi elliptic form (22) provides the best analytical estimate value when compared to the exact
angular frequency given by Eq. (34). To further investigate on applicability of rational Jacobi elliptic forms to solve nonlinear
differential equations, we shall next derive the analytical solution of a Duffing nonlinear oscillator.
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3.2. Non-homogenous Duffing oscillator: first-order elliptic rational form solution

Here we consider the nonlinear Duffing oscillator of the form

ẍ+
εx3

(Ax2 + B)
+ C = 0 (35)

and use the rational Jacobi elliptic form (8) to find its approximate solution. In this case, x represents motion displacement
and ε, A, B, and C are system constant parameters. Physical applications as well as approximate solutions of Eq. (35) when
C ≡ 0 by using several techniques may be found in [22,23] and works cited therein.
For the non-homogeneous nonlinear oscillator considered in this study (35) and in accordance with the rational elliptic

balance method, we assume that its solution is given by Eq. (8). Then, substitution of Eq. (8) into Eq. (35) provides the
following expression:

a2AC + BC + a3ε − 2(a2A+ B)c(ac − b)(k2 − 1)ω2 + cn (ωt + φ, k2)(2aAbC
+ 3a2AcC + 5BcC + 3a2bε + 2a3cε + (b− ac)(4abcA(k2 − 1)+ a2A(2k2 − 1)
+ B(2k2 − 1+ 4c2(k2 − 1)))ω2)+ cn2(ωt + φ, k2)(Ab2C + 6abcAC + 3a2c2AC
+ 10Bc2C + 3ab2ε + 6a2bcε + a3c2ε + (b− ac)(−B(c + 2c3)+ 2B(c + c3)k2

+ a2cA(1− 2k2)+ 2Ab2c(k2 − 1)+ 2aAb(2k2 − 1))ω2)+ cn3(ωt + φ, k2)(3Ab2cC
+ 6abc2AC + a2c3AC + 10Bc3C + b3ε + 6ab2cε + 3a2bc2ε + (b− ac)(−Ab2

+ 2aAbc + Bc2 − 2(a2A− Ab2 + B+ 2aAbc + Bc2)k2)ω2) + cn4(ωt + φ, k2)
× (c(5Bc3C + Abc(3b+ 2ac)C + b2(2b+ 3ac)ε)− (b− ac)(−Bc3 + 2Bc(2+ c2)k2

+ Ab(4ak2 + bc(2k2 − 1)))ω2)+ cn5(ωt + φ, k2)(c2(Ab2cC

+ Bc3C + b3ε)− 2(b− ac)(Ab2 + Bc2)k2ω2) = 0. (36)

As usual, we use the Jacobi amplitude function ϕ of argumentωt+φ, ϕ = am(ω1t+φ, k2) so that cosϕ = cn (ωt+φ, k2).
Thus, substituting the Jacobi amplitude function ϕ into Eq. (36) leads to

2(8a2AC + 4Ab2C + 8BC + 24aAbcC + 12a2Ac2C + 9Ab2c2C + 40Bc2C
+ 6aAbc3C + 15Bc4C + 8a3ε + 12ab2ε + 24a2bcε + 6b3cε
+ 4a3c2ε + 9ab2c2ε + (b− ac)(4aAb(k2 − 2)+ Ab2c(2k2 − 5)+ 4a2Ac(2k2 − 3)
+ Bc(2(6+ c2)k2 − 5(4+ c2)))ω2)+ cosϕ(2(16aAbC
+ 24a2AcC + 18Ab2cC + 40BcC + 36aAbc2C + 6a2Ac3C + 5Ab2c3C
+ 60Bc3C + 5Bc5C + 24a2bε + 6b3ε + 16a3cε + 36ab2cε + 18a2bc2ε
+ 5b3c2ε + 2(b− ac)(Ab2(k2 − 3)+ 2a2A(k2 − 2)+ 2aAbc(2k2 − 5)
+ B(−4− 13c2 + (2+ 5c2)k2))ω2))+ cos 2ϕ(8(A(b2 + 6abc + 3(a2 + b2)c2 + 2abc3)C
+ (6a2bc + 2b3c + a3c2 + 3ab2(1+ c2))ε + A(ac − b)(2ab+ b2c + a2c(2k2 − 1))
×ω2 + Bc(5d(2+ c2)C + (ac − b)(1+ c2 + 2k2)ω2)))
+ cos 3ϕ(5Bc3(8+ c2)C + Ac(24abc + 4a2c2 + b2(12+ 5c2))C
+ 4b3ε + bc(24ab+ 12a2c + 5b2c)ε − 2A(b− ac)(2b(b− 2ac)
+ (b2 + 4a(a+ 2bc))k2)ω2 − 2B(b− ac)(4k2 + c2(9k2 − 2))ω2)
+ cos 4ϕ(2(c(5Bc3C + Abc(3b+ 2ac)C + b2(2b+ 3ac)ε)− (b− ac)
× (−Bc3 + 2Bc(2+ c2)k2 + Ab(4ak2 + bc(2k2 − 1)))ω2))+ cos 5ϕ(c2(Ab2cC

+ Bc3C + b3ε)− 2(b− ac)(Ab2 + Bc2)k2ω2) = 0. (37)

By using the initial conditions (7) and by setting the coefficients of the constant term, cosϕ, cos 2ϕ and cos 3ϕ equal to zero
in Eq. (37), we obtain the relations that are needed to determine the parameters a, b, c, k, ω and ϕ of Eq. (8):

2(8a2AC + 4Ab2C + 8BC + 24aAbcC + 12a2Ac2C + 9Ab2c2C
+ 40Bc2C + 6aAbc3C + 15Bc4C + 8a3ε + 12ab2ε + 24a2bcε + 6b3cε
+ 4a3c2ε + 9ab2c2ε + (b− ac)(4aAb(k2 − 2)+ Ab2c(2k2 − 5)

+ 4a2Ac(2k2 − 3)+ Bc(2(6+ c2)k2 − 5(4+ c2)))ω2) = 0; (38)
2(16aAbC + 24a2AcC + 18Ab2cC + 40BcC + 36aAbc2C + 6a2Ac3C
+ 5Ab2c3C + 60Bc3C + 5Bc5C + 24a2bε + 6b3ε + 16a3cε + 36ab2cε
+ 18a2bc2ε + 5b3c2ε + 2(b− ac)(Ab2(k2 − 3)+ 2a2A(k2 − 2)
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+ 2aAbc(2k2 − 5)+ B(−4− 13c2 + (2+ 5c2)k2))ω2) = 0; (39)
8(A(b2 + 6abc + 3(a2 + b2)c2 + 2abc3)C + (6a2bc + 2b3c + a3c2

+ 3ab2(1+ c2))ε + A(ac − b)(2ab+ b2c + a2c(2k2 − 1))ω2

+ B(5d(2+ c2)C + (ac − b)(1+ c2 + 2k2)ω2)) = 0; (40)
5(Bc3(8+ c2)C + Ac(24abc + 4a2c2 + b2(12+ 5c2))C + 4b3ε
+ bc(24ab+ 12a2c + 5b2c)ε − 2A(b− ac)(2b(b− 2ac)

+ (b2 + 4a(a+ 2bc))k2)ω2 − 2B(b− ac)(4k2 + c2(9k2 − 2))ω2) = 0. (41)

Also, from Eqs. (7) and (8), we have that

φ ≡ 0 and b ≡ x10(1+ c)− a. (42)

Then, using Eqs. (38) and (39) and solving for k and ω, yields the following expressions

k =

√
H1
H2
; ω =

√
2H2
H3
, (43)

where the expression of H1,H2, and H3 are given in Appendix.
To find the constants a and c , we substitute the expression of k and ω given by Eq. (43) into Eqs. (40) and (41). Hence,

for each choice of ε, A, B and C , the constants a and c can be found by numerical solution of Eqs. (40) and (41). During the
numerical solution processes, it is important to bear in mind that the rational elliptic balance procedure requires to satisfy
the following condition |b| > |a| > |c| in order to have periodic response.
To further investigate alternative rational elliptic expressions to improve the accuracy of approximate solutions to Eq.

(35), we study in the next section a second-order rational elliptic form solution.

3.3. Non-homogeneous Duffing oscillator: second-order elliptic rational form solution

We now seek the approximate solution of Eq. (35) by using the following second-order rational elliptic form

x(t) =
a+ bcn (ω2t + φ, k22)
{1+ ccn 2(ω2t + φ, k22)}

, (44)

where a, b, c, k2, φ, and ω2 are constants that need to be determined. According to the rational elliptic balance method, we
substitute Eq. (44) into Eq. (35), this yields

a2AC + BC + a3ε + 2a(a2A+ B)c(k22 − 1)ω
2
2 + bcn (ω2t + φ, k

2
2)(2aAC

+ B(2k22 − 1+ 6c(k
2
2 − 1))ω

2
2 + a

2(3ε + A(−1− 10c + 2(1+ 5c)k22)ω
2
2))

+ cn2(ω2t + φ, k22)(5BcC + A(b
2
+ 3a2c)C + 3ab2ε + 2a3cε + 2aBc(2+ c

− (4+ c)k22)ω
2
2 − 2aA(a

2c(−2− 3c + (4+ 3c)k22)+ b
2(1+ 7c − (2+ 7c)k22))ω

2
2)

+ bcn3(ω2t + φ, k22)(b
2ε + 6ac(AC + aε)− (2B(c(5c − 2)+ (1+ (4− 5c)c)k22)

+ A(b2(1+ 6c − 2(1+ 3c)k22)+ 2a
2(−7c(1+ c)+ (1+ 7c(2+ c))k22)))ω

2
2)

+ cn4(ω2t + φ, k22)(c(10BcC + 3A(b
2
+ a2c)C + 6ab2ε + a3cε)+ 2a(Ac(−2a2c

+ b2(8+ 5c))+ A(a2c(3+ 4c)− b2(2+ c(16+ 5c)))k22 + Bc(c(2+ 5c)+ (3

− c(4+ 5c))k22))ω
2
2)+ bcn

5(ω2t + φ, k22)(c(2b
2ε + 3ac(2AC + aε))+ (Ac(−9a2c

+ 2b2(3+ c))− 2A(−9a2c(1+ c)+ b2(1+ c(6+ c)))k22 + 2Bc(k
2
2 + c(5− c

+ (c − 10)k22)))ω
2
2)+ ccn

6(ω2t + φ, k22)(c(10cBC + A(3b
2
+ a2c)C + 3ab2ε)

+ 2a(−3Ab2c + A(−a2c + b2(9+ 6c))k22 + Bc(c(−2+ 3c)+ (5+ (4− 3c)c)k
2
2))ω

2
2)

+ bccn7(ω2t + φ, k22)(c(2acAC + b
2ε)+ (−Ab2c + 2A(−2a2c + b2(3+ c))k22

+ 2Bc(c(2+ c)− (c − 1)(5+ c)k22))ω
2
2)+ c

2cn8(ω2t + φ, k22)(Ab
2(cC − 2ak22ω

2
2)

+ Bc(5cC + 2a(k22 + c(4k
2
2 − 2))ω

2
2))+ bc

3Bω2cn9(ω2t + φ, k22)(2(3+ c)k
2
2 − c)

+ Bc4cn10(ω2t + φ, k22)(cC − 2ak
2
2ω
2
2) = 0. (45)

Then we apply the transformation cosϕ2 = cn (ω2t + φ, k22) to Eq. (45) and get after using trigonometric identities that
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2(16a2A(2+ c)(8+ c(8+ 5c))C + (2Ab2(64+ c(144+ 5c(24+ 7c)))
+ B(2+ c)(128+ c(352+ 7c(32+ 9c)))))C + 48ab2(8+ c(12+ 5c))ε
+ 2a(2Ab2(8(−8+ c(15c − 8))+ (32+ 5(8− 7c)c)k22)+ Bc(20c(16+ c(15+ 5c))

− (−32+ c(112+ c(90+ 23)))k22))ω
2
2 + 32a

3((8+ c(8+ 3c))ε + Ac(12c + 2k22
− 5ck22)ω

2
2)− 4b cosϕ2(−4aA(64+ c(144+ 5c(24+ 7c)))C − 48a

2(8+ c(12

+ 5c))ε − 2b2(48+ 5c(16+ 7c))ε + (2Ab2(48+ 48c − 45c2 + 2(−8+ c(5c − 9))k22)

+ 8a2A(16− 2c(4+ 39c)+ (−8+ c(23c − 4))k22)+ B(128+ 384c + 160c
2
− 120c3

− 77c4 + c(−32+ c(−80+ c(3+ c)(7c − 10)))k22))ω
2
2)+ 2 cos 2ϕ2(8a(16a

2c(2+ c)

+ 3b2(4+ 3c)(4+ 5c))ε + Bc(5(128+ c(256+ c(240+ 7c(16+ 3c))))C + 2a(8(2
+ c)(16+ c(16+ 17c))− (128+ c(40+ c(48+ 17c)))k22)ω

2
2)+ 8A(a

2c(3(16

+ c(16+ 5c))C + 2a(16(2+ c)+ (c − 16)k22)ω
2
2)+ b

2((16+ c(48+ c(45+ 14c)))C

− 2a(16+ c(−16− 35c + (9+ 4c)k22))ω
2
2)))+ 8b cos 3ϕ2(6acA(16+ c(20+ 7c))C

+ B(c(64+ c(40+ c(44+ 21c)))− 2(16+ c(4+ c)(11+ c))k22)ω
2
2 + 4a

2(3c(8

+ 5c)ε + A(c(56+ 11c)+ (c − 2)(4+ 13c)k22)ω
2
2)+ b

2((4+ 3c)(4+ 7c)ε + A(−8(2

+ k2)+ c(24+ 19c + c(c − 9)k22))ω
2
2))+ 8 cos 4ϕ2(2Ac(6a

2c(2+ c)+ b2(12

+ c(18+ 7c)))C + 4aA(2a2c(−4c + (6+ 5c)k22)+ b
2(2c(16+ c)+ (−8+ c(9c

− 10))k22))ω
2
2 + c(5Bc(2+ c)(8+ c(8+ 3c))C + 4A(2a

2c + 3b2(4+ 3c))ε

+ 2aB(8c(2+ c(2+ c))+ (24+ c(22+ 5c)))k22)ω
2
2)+ 8b cos 5ϕ2(2aAc

2(12

+ 7c)C + Bc(5c(8+ c(4+ c))+ 2(4+ (c − 1)c(5+ 2c))k22)ω
2
2 + 4a

2c(3cε

+ A(−9c(18+ 11c)k22)ω
2
2)+ b

2(c(8+ 7c)ε + A(c(24+ c)+ 2(−4+ 3(c

− 1)c)k22)ω
2
2))+ c cos 6ϕ2(c(16A(a

2c + b2(3+ 2c))+ 5Bc(32+ c(32+ 9c)))C

+ 48ab2cε + 2a(−16c(3Ab2 + Bc(2+ c))+ (16A(−a2c + b2(9+ 4c))
+ Bc(80+ c(96+ 35c)))k22)ω

2
2)+ 2bc cos 7ϕ2(4c(2acAC + b

2ε)

+ (−c(4Ab2 + B(c − 16)c)+ 2(4A(−2a2c + b2(3+ c))+ Bc(20+ c(11
+ 5c)))k22)ω

2
2)+ 2c

2 cos 8ϕ2(2Ab2(cC − 2ak22ω
2
2)+ Bc(5c(2+ c)C

+ 2a(−4c(2+ 3c)k22)ω
2
2))+ 2bBc

3ω22 cos 9ϕ2(−c + 2(3+ c)k
2
2)+ Bc

4(cC − 2ak22ω
2
2) cos 10ϕ2 = 0. (46)

Next we set in Eq. (46) the coefficients of the two lowest harmonic terms equal to zero to obtain the following expressions
for k2 and ω2:

k2 =

√
H4
2H5
; ω2 =

√
H6
H7
, (47)

where the expressions of H4,H5,H6 and H7 are given in Appendix.
From the initial conditions (7), we have from Eq. (44) that φ = 0 and

b = x10(1+ c)− a. (48)

The remaining equations needed to determine the constants a and c of Eq. (44) are obtained by setting the coefficients of
the harmonic terms cos 2ϕ and cos 3ϕ equal to zero. This provides the following two equations:

8a(16a2c(2+ c)+ 3b2(4+ 3c)(4+ 5c))ε + Bc(5(128+ c(256+ c(240+ 7c(16
+ 3c))))C + 2a(8(2+ c)(16+ c(16+ 17c))− (128+ c(40+ c(48+ 17c)))k22)ω

2
2)

+ 8A(a2c(3(16+ c(16+ 5c))C + 2a(16(2+ c)+ (c − 16)k22)ω
2
2)+ b

2((16+ c(48

+ c(45+ 14c)))C − 2a(16+ c(−16− 35c + (9+ 4c)k22))ω
2
2)) = 0, (49)

6acA(16+ c(20+ 7c))C + B(c(64+ c(40+ c(44+ 21c)))− 2(16+ c(4+ c)(11
+ c))k22)ω

2
2 + 4a

2(3c(8+ 5c)ε + A(c(56+ 11c)+ (c − 2)(4+ 13c)k22)ω
2
2)

+ b2((4+ 3c)(4+ 7c)ε + A(−8(2+ k22)+ c(24+ 19c + c(c − 9)k
2
2))ω

2
2) = 0. (50)

Then, substitution of the expressions of k2, ω2, and b given by Eqs. (47) and (48) respectively, into Eqs. (49) and (50) and by
numerically solving these equations, we obtain the values of a and c that satisfy the condition |b| > |a| > |c| [6].
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4. Results

To assess the accuracy of our rational Jacobi elliptic solution forms used to determine analytical solutions of the Duffing
nonlinear oscillator given by Eq. (35), we first derive the second-order harmonic balance solution of Eq. (35) and then, we
determine the exact angular frequency value from energy considerations.

4.1. Second-order harmonic balance solution

Here, we derive the approximate solution of Eq. (35) by applying the rational harmonic balance method by assuming a
second-order solution of the form [7,9]:

x(t) =
aB + bB cos(ωBt + φ)
1+ cB cos2(ωBt + φ)

(51)

where aB, bB, cB, and ωB need to be determined. Substituting Eq. (51) into Eq. (35), expanding the resulting expression in
a trigonometric series and by setting the constant terms and the coefficients of cosωBt and cos 2ωBt to zero, respectively,
yields the following equations:

16a2BA(2+ cB)(8+ cB(8+ 5cB))D1 + (2Ab
2
B(64+ cB(144+ 5cB(24+ 7cB)))

+ B(2+ cB)(128+ cB(256+ cB(352+ 7cB(32+ 9cB)))))D1 + 48aBb2B(8

+ cB(12+ 5cB))ε + 32aB(20Bc2B (1+ cB)+ Ab
2
B(−8+ cB(15cB − 8)))ω

2
B

+ 32a3((8+ cB(8+ 3cB))ε + 12Ac2Bω
2
B) = 0, (52)

2aBA(64+ cB(144+ 5cB(24+ 7cB)))D1 + 4B(−16+ cB(−48
+ 5cB(3cB − 4)))ω2B + b

2
B((48+ 5cB(16+ 7cB))ε + 3A(−16+ cB(15cB

− 16))ω2B)+ 8a
2
B(3(8+ cB(12+ 5cB))ε + A(−8+ cB(4+ 39cB))ω

2
B) = 0, (53)

8aB(16a2BcB(2+ cB)+ 3b
2
B(4+ 3cB)(4+ 5cB))ε + BcB(5(128+ cB(256+ cB(240

+ 7cB(16+ 3cB))))D1 + 16aB(2+ cB)(16+ cB(16+ 17cB))ω2B)+ 8A(a
2
BcB(3(16

+ cB(16+ 5cB))D1 + 32aB(2+ cB)ω2B)+ b
2
B((16+ cB(48+ cB(45+ 14cB)))D1

+ 2aB(−16+ cB(16+ 35cB))ω2B)) = 0. (54)
By taking into account the initial conditions given by Eq. (7), we get:

bB = x10(1+ cB)− aB; φ = 0. (55)
After substitution of Eq. (55) into Eqs. (52)–(54), we can numerically obtain the vales of aB, bB, cB, and ωB that satisfy the
condition |bB| > |aB| > |cB| [6].

4.2. Exact angular frequency

To find the exact angular frequency of Eq. (35), we follow Radhakrishnan et al. procedure [24] to get from Eq. (35) that∫ x=x0

x=xi

dx
√
I(x0)− I(x)

=

∫ t=T

t=T/2
dt =

T
2
=

π

ωex
, (56)

where ωex is the exact angular frequency of the nonlinear oscillator and

I(x) = 2ε
(
x2

2A
−
B ln(b+ ax2)

2A2

)
+ 2Cx, (57)

where the value of xi is determined by solving the following equation

ẋ2 = I(x0)− I(x) ≡ 0. (58)
To compute the approximate analytical angular frequencies’ values for the first and second-order solutions given by Eqs.

(8) and (44) respectively, we recall that the Jacobi elliptic function cn (ωt, k2) has a period inωt equal to 4K(k2) and thus, the
approximate period of oscillation of Eq. (35) can be determined by using Eq. (20). Thus, the corresponding circular frequency
Ω of the first-order solution of Eq. (35) can be computed from

Ω =
πω

2K(k2)
. (59)

Similarly, the second-order approximate angular frequency of Eq. (35) is given by

Ω2 =
πω2

2K(k22)
, (60)

where k2 and ω2 are determined from Eq. (46).
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Fig. 1. Amplitude-time response curves of a Duffing oscillator for parameter values of A = 1, B = 0.5, C1 = 5, ε = 10, x10 = 1.

Table 1
Comparison of the approximate and exact angular frequency values.

x10 A B C ε Exact
value
ωex

Harmonic
balance
second
order
solution
ωB

Elliptic
first
order
solution
Ω

Elliptic
second
order
solution
Ω2

MHPM
ΩH

% Error
harmonic
balance
second
order
solution

% Error
elliptic
first
order
solution

% Error
elliptic
second
order
solution

%
Error
MPHM

1 1 1 1 1 0.8978 0.8938 0.9006 0.8977 0.8979 0.4451 0.3161 0.0103 0.0111
1 1 0.5 5 10 2.7971 2.7533 2.8061 2.7925 2.799 1.5657 0.3208 0.1634 1.6598
5 1 1 3 3 1.6916 1.6931 1.6955 1.6953 1.6919 0.0880 0.2298 0.2161 0.0709
10 −1 −1 −1 −1 0.9888 0.9900 0.9903 0.9903 0.9889 0.1164 0.1450 0.1425 0.1111
25 0.01 1 3 1 8.9206 8.8371 8.9530 8.9204 8.9423 0.9342 0.3635 0.0020 1.1904
100 0.25 5 2 1 1.9962 1.9968 1.9968 1.9968 1.9962 0.0300 0.0300 0.0300 0.0000

5. Simulations

In this section, we compare the exact angular frequency values obtained by integrating Eq. (56) with the approximate
angular frequencies ωB,Ω,Ω2 computed from our derived elliptic and harmonic solutions and with the angular frequency
valueΩH obtained by following Hashim and Chowdhury Multistage Homotopy-Peturbation Method (MHPM) [25].
As we may see from Table 1 and for the assigned parameter values shown there, our expressions for the approximate

angular frequencies computed by the elliptic balance procedure compare favorably to the exact value. In fact, under these
conditions the percentage error of the first-order rational elliptic angular frequency solutionΩ when compared to the exact
angular frequency values ωex is less than 0.36%, while the second-order rational elliptic angular frequencyΩ2 solution has
smaller percentage errors that do not exceed 0.22%, compared to the 1.56% error obtained from the second-order harmonic
balance solution or from the 1.65% error predicted from the Multistage Homotopy-Peturbation approximate solution. Fig. 1
shows the comparison of the elliptic, harmonic and numerical solutions for parameter values of A = 1, B = 0.5, C1 = 5,
ε = 10, x10 = 1. We may see from Fig. 1 that the elliptic balance solutions follow very closely the numerical solution while
the second-order harmonic balance solution starts to deviate from the numerical one at values of t > 10. In general, and for
the parameter values show in Table 1, we may conclude that the derived elliptic balance solutions are more accurate than
those of the second-order harmonic balance solution and compare favorably with the predicted values obtained from the
Multistage Homotopy-Peturbation solution. Also, wemay see from Table 1 that for larger values of x10 the elliptic, harmonic
and MHPM approximate angular frequency values are almost the same. As expected, the condition |b| > |a| > |c| for the
elliptic and harmonic solutions is satisfied in all cases studied here as shown in Table 2.

6. Discussion

In this paper, we have introduced a new approach based on rational elliptic forms to obtain analytical approximate
solutions to strong nonlinear oscillators described by Eqs. (21) and (35). The main motivation for the use of rational elliptic
forms to seek the solution of nonlinear oscillators comes from the fact that (a) the quadraticmixed-parityHelmholtz–Duffing
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Table 2
Parameter values of the proposed rational elliptic form solutions.

x01 A B C ε Second-order harmonic
balance

First-order rational elliptic
form

Second-order rational
elliptic form

a b c a b c a b c

1 1 1 1 1 −1.0167 1.9257 −0.0909 −0.9653 2.0740 0.1086 −0.9554 1.7500 −0.2053
1 1 0.5 5 10 −0.4795 1.3643 −0.1152 −0.4692 1.5440 0.0748 −0.4515 1.2064 −0.2451
5 1 1 3 3 −0.9730 5.9095 −0.0126 −0.9787 5.9996 0.0041 −0.9783 5.8404 −0.0275
10 −1 −1 −1 −1 0.9870 8.9592 −0.0053 0.9887 9.0013 −0.0009 0.9887 8.9179 −0.0093
25 0.01 1 3 1 −0.0275 22.6179 −0.0963 −0.0278 25.0329 0.0001 −0.0266 19.3273 −0.2279
100 0.25 5 2 1 −0.4989 100.415 −0.0008 −0.4989 100.5 0.0000 −0.4989 100.389 −0.0010

oscillator [12] and (b) the undamped nonhomogeneous Duffing equation (6) have exact solutions described by rational
elliptic forms. For instance, if one wants to seek the solution of a nonlinear oscillator of the form (1) that satisfies the initial
conditions given by Eq. (2), a first-order rational expression of the form:

x(t) =
a+ bcn (ωt + φ, k2)
1+ ccn (ωt + φ, k2)

, (61)

could be used. To obtain the second-order approximate solution of Eq. (1), we can use the rational elliptic form

x(t) =
a+ bcn (ωt + φ, k2)
1+ ccn2(ωt + φ, k2)

, (62)

or the following equation

x(t) =
acn (ω22t + φ, k222)

{1+ bcn2(ω22t + φ, k222)}
, (63)

to obtain the analytical solution of a singular oscillator described by Eq. (21). Of course, the condition |b| > |a| > |c| for
Eqs. (61) and (62), and |a| > |b| in Eq. (63) must be satisfied to have periodic response solutions [6]. Also, notice from Eqs.
(24), (37) and (46) that these rational elliptic forms provide information on all the harmonics since Jacobi elliptic functions
are a generalization of the trigonometric ones. Furthermore, our derived first-order elliptic balance approximate solution
(8) predicts well not only the solution of Eq. (35) but also it captures the exact solution in the case when A = 0 since
this Eq. (35) reduces to the non-homogeneous undamped, Duffing equation (8). In this case, the approximate second-order
harmonic balance solution given by Eq. (51) fails to provide the exact solution of Eq. (8).

7. Conclusions

A rational elliptic balance method was adapted to obtain exact and approximate solutions of nonlinear oscillators. In
reference to angular frequency values, when comparing our approximate rational elliptic balance solution results with both
the numerical integration and the Multistage Homotopy Perturbation Method, we found good agreement in most cases.
It should be noted that the proposed rational elliptic balancemethod has some limitations. The inappropriate application

of this method can lead to large errors in the solution. The correct form of the rational solution should be used, as described
byMickens in [26]. Future work is focused on applying rational elliptic forms to investigate approximate solutions of forced,
damped nonlinear systems with one or more degrees of freedom with preliminary and encouraging results.
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Appendix

The expressions of H1 through H6 to compute k, ω, k2, and ω2 values in Eqs. (43) and (47) are given by:

H1 = A2b4(36c2 + 25c4 − 24)C + 2Ab2B(72c2 + 83c4 + 25c6 − 40)C
+ 32a5A(5c2 − 2)ε + Ab5c(25c2 − 6)ε + 8a4A(A(24c2 + 9c4 − 8)C
+ bc(8+ 17c2)ε)+ 8a3(4A2bc(1+ 6c2)C + 2Ab2(3+ 5c2)ε + B(10c2

− 3c4 − 8)ε)+ B(B(272c2 + 240c4 + 10c6 + 25d8 − 64)C + b3c(72
− 26c2 + 25c4)ε)+ 2a2(A(3Ab2(8− 5c4)+ B(168c2 + 264c4 + 45c6

− 64))C + 3bc(48B+ (5c2 − 8)(3Bc2 − Ab2))ε)+ 2ab(2Ac(Ab2c2 + B(72
− 48c2 − 59c4))C + b(Ab2(23c2 − 12)− 3B(16− 56c2 + 9c4))ε), (A.1)
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H2 = 2(2Ab2B(5c2 − 1)(8+ 5c2 + c4)C + A2b4(9c2 + 5c4 − 4)C
+ 5Ab5d3ε + 8Aa5(7c2 − 2)ε + 8a4A(A(9c2 + 3c4 − 2)C + bc(6+ 7c2)ε)
+ 2a3(16A2bd(1+ 3c2)C + Ab2(8+ 39c2)ε − 2B(4− 12c2 + c4)ε)
+ B(B(5c2(24+ 34c2 + 3c4 + c6)− 16)C + b3c(24+ 6c2 + 5c4)ε)
+ ab(4Ac(Ab2(3+ c2)+ B(24+ 15c2 − 11c4))C + b(13Ab2c2

− 3B(8− 46c2 + 3c4))ε)+ 2a2(A(Ab2(8+ 21c2 + c4)+ B(80c2

+ 105c4 + 13c6 − 16))C + bc(Ab2(18+ c2)+ 3B(16+ 2c2 + 3c4))ε)), (A.2)

H3 = (b− ac)(8a4A2c + 32a3A2bc2 + 4aAb(Ab2 + 13Bc2)+ 2a2Ac(9Ab2

+ B(8+ 21c2))+ c(A2b4 + 2Ab2B(7+ c2)+ B2(8+ 54c2 + c4))). (A.3)

H4 = (256a4A2(128+ c(128+ c(−192+ c(−104+ c(15c − 2)))))C − (2Ab2(64+ c(144
+ 5c(24+ 7c)))+ B(2+ c)(128+ c(256+ c(352+ 7c(32
+ 9c)))))(6Ab2(−16+ c(15c − 16))+ B(−128+ c(−384+ c(−160+ c(120
+ 77c)))))C + 64a2A(3Ab2(−128+ c(−640+ c(−904+ c(−352+ 5c(23
+ 17c)))))+ B(1024+ c(3328+ c(4864+ c(5088− c(−2072+ c(826
+ c(1072+ 273c))))))))C + 512a5A(64+ c(32+ c(−32+ 9c(12+ 7c))))ε
+ 32ab2(Ab2(384+ c(832+ c(968+ 5c(188+ 75c))))
+ 2B(768+ c(3456+ c(5856+ c(4720+ c(1658+ (57− 70c)c))))))ε
− 32a3(6Ab2(4+ c)(32+ c(184+ c(244+ 85c)))− B(1024+ c(4096
+ c(12416+ c(20672+ c(17624+ c(7424+ 1269c)))))))ε); (A.4)

H5 = (−(2Ab2(−8+ c(5c − 9))+ B(−32+ c(−80+ c(3+ c)(7c
− 10))))(2Ab2(64+ c(144+ 5c(24+ 7c)))+ B(2+ c)(128+ c(256+ c(352
+ 7c(32+ 9c)))))C + 256a4A2(32+ c(32+ c(−24+ c(10+ c(34
+ 15c)))))C + 16a2A(16Ab2(−32+ c(−138+ c(−193− 97c + 10c3)))
+ B(1024+ c(3072+ c(4704+ c(5536+ c(3232+ c(168− c(653
+ 196c))))))))C + 128a5A(64+ c2(−32+ c(128+ 81c)))ε + 2ab2(2Ab2

× c(−448+ c(−48+ 5c(208+ 125c)))+ B(6144+ c(23040
+ c(35456+ c(28288+ c(11312+ (1654− 35c)c))))))ε − 16a3(8Ab2(1
+ c)(64+ c(228+ c(138+ 5c)))− B(512+ c(1024+ c(3488+ c(6496+ c(5364
+ c(5364+ c(2000+ 303c)))))))ε)), (A.5)

H6 = ((2Ab2(−8+ c(−9+ 5c))+ B(−32+ c(−80+ c(3+ c)(−10+ 7c))))(2Ab2(64
+ c(144+ 5c(24+ 7c)))+ B(2+ c)(128+ c(256+ c(352+ 7c(32+ 9c)))))D1
− 256a4A2(32+ c(32+ c(−24+ c(10+ c(34+ 15c)))))D1
− 16a2A(16Ab2(−32+ c(−138+ c(−193− 97c + 10c3)))
+ B(1024+ c(3072+ c(4704+ c(5536+ c(3232+ c(168− c(653+ 196c))))))))D1
− 128a5A(64+ c2(−32+ c(128+ 81c)))ε − 2ab2(2Ab2c(−448+ c(−48+ 5c(208+ 125c)))
+ B(6144+ c(23040+ c(35456+ c(28288+ c(11312+ (1654− 35c)c))))))ε
+ 16a3(8Ab2(1+ c)(64+ c(228+ c(138+ 5c)))
− B(512+ c(1024+ c(3488+ c(6496+ c(5364+ c(2000+ 303c)))))))ε), (A.6)

H7 = (a(4A2(64a4c(16+ c2(57c − 34))+ 48a2b2c(−16+ c(−92+ 3c(5c − 31)))+ b4(512
+ c(1280+ c(208+ 5c(75c − 136)))))+ 4ABc(16a2(128+ c(288+ c(180+ c(396
+ (76− 9c)c))))+ b2(2304+ c(5440+ c(2816+ c(208+ c(461+ 525c))))))+ B2c(4096
+ c(18432+ c(22272+ c(17536+ c(15904+ c(10224+ 7c(430+ 53c))))))))). (A.7)
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