14 research outputs found

    Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements

    Get PDF
    Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity - i.e. the tendency to form two separate subgraphs - than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network

    Prevalence of stroke survival in rural communities living in northern Peru. S1 Data

    Get PDF
    BACKGROUND AND PURPOSE: Stroke is the leading cause of neurological impairment in the South American Andean region. However, the epidemiology of stroke in the region has been poorly characterized. METHODS: We conducted a staged three-phase population-based study applying a validated eight-question neurological survey in 80 rural villages in Tumbes, northern Peru, then confirmed presence or absence of stroke through a neurologist's examination to estimate the prevalence of stroke. RESULTS: Our survey covered 90% of the population (22,278/24,854 individuals, mean age 30±21.28, 48.45% females), and prevalence of stroke was 7.05/1,000 inhabitants. After direct standardization to WHO's world standard population, adjusted prevalence of stroke was 6.94/1,000 inhabitants. Participants aged ≥85 years had higher stroke prevalence (>50/1000 inhabitants) compared to other stratified ages, and some unusual cases of stroke were found among individuals aged 25-34 years. The lowest age reported for a first stroke event was 16.8 years. High blood pressure (aPR 4.2 [2.7-6.4], p>0.001), and sedentary lifestyle (aPR 1.6 [1.0-2.6], p = 0.045) were more prevalent in people with stroke. CONCLUSIONS: The age-standardized prevalence of stroke in this rural coastal Peruvian population was slightly higher than previously reported in studies from surrounding rural South American settings, but lower than in rural African and Asian regions. The death rate from stroke was much higher than in industrialized and middle-income countries

    Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    No full text
    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity

    Correction: Corrigendum: Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    No full text
    Nat. Biotechnol. 35, 725–731 (2017); published online 8 August 2017; corrected after print 29 November 2017; corrected after print 7 December 2017In the version of this article initially published, the author A. Murat Eren was listed as A.M. Eren. The corresponding affiliation was given as the Knapp Center for Biomedical Discovery, rather than Department of Medicine, University of Chicago, Chicago, Illinois, USA, and Marine Biological Laboratory, Woods Hole, Massachusetts, USA. The errors have been corrected in the HTML and PDF versions of the article as of 29 November 2017.In the version of this article initially published, the following acknowledgment was omitted: A.L. was supported by the Russian Science Foundation (grant number 14-50-00069). The error has been corrected in the HTML and PDF versions of the article as of 7 December 2017
    corecore