182 research outputs found

    Local anaesthesia efficacy as postoperative analgesia for open shoulder instability surgery. a prospective randomised controlled study

    Get PDF
    Background and objectives: The aim of present study was to evaluate for the first time, the clinical effect of local anaesthetic infiltration as postoperative analgesia in open shoulder surgery for anterior-inferior instability. The comparison of the local infiltration and interscalenic brachial plexus block to a control group test the local anaesthetic efficacy in this surgery. Methods: 78 patients scheduled for open shoulder surgery were enrolled and randomly assigned to one of three groups: local infiltration anaesthesia (LIA), interscalenic brachial plexus block (IBPB) and control (C). All patients received standardized general anaesthesia and all injections were performed with the same dose and volume of anaesthetic. The number boluses delivered by a PCA pump applied at the end of surgery and the visual analogue score (VAS) at 0, 2, 4, 6, 12, 18 and 24 hours after intervention were recorded. A patient satisfaction score was also assessed. Results: Mean bolus consumption of the rescue analgesic, compared to C, was significantly less both in the LIA and IBPB groups (P<0.05). The IBPB group showed VAS scores that were significantly better than C group at all time points (P<0.05). The VAS scores for LIA group were clinically comparable to IBPB, and only at the 2 and 6 hours, postoperative time points there were no significant differences found in respect to the C group. IBPB and LIA showed comparable patient satisfaction scores. Conclusion: The local anaesthetic infiltration as postoperative analgesia appears to be a clinically valid alternative, statistically comparable to IBPB, with no clinical meaningful adverse effects

    comparative life cycle assessment of low pressure rtm compression rtm and high pressure rtm manufacturing processes to produce cfrp car hoods

    Get PDF
    Abstract Advanced composite materials, especially those based on carbon fibers, have been attracting the interest of industrial companies for producing light and high-performance components. Resin Transfer Molding (RTM) and its variants have been recognized as the most promising processes to manufacture CFRP (Carbon Fiber Reinforced Polymer) products in a cost-effective way. However, recent research studies highlighted environmental concerns regarding the use of CFRP parts due to the high environmental load related to their production. In this context, the main scope of the present paper is to investigate and compare the environmental impacts of three alternative manufacturing processes for producing CFRP car hoods: RTM, High-Pressure RTM and Compression-RTM. This analysis has been carried out through the standard Life Cycle Assessment methodology. The system boundaries include all the flows related to manufacturing of the hood and an end of life. Results calculated by using the ReCiPe mid-point/end-point method suggest that the eco-friendliest variant is the Compression-RTM

    3D printing and testing of composite isogrid structures

    Get PDF
    AbstractThe present work aims at studying the effect of geometric parameters of isogrid structures on their buckling behavior. To this purpose, isogrid structures in polyamide reinforced with short carbon fibers, with different rib widths, rib thicknesses, and cell heights, were additively manufactured using the fused deposition modeling technology; then, they were subjected to compression test until the occurrence of buckling. It was observed that isogrid structures can undergo to different failure modes, local and global buckling, depending on the values of geometrical parameters. Furthermore, the geometrical parameters that lead to the highest strength are different to those providing the highest specific strength. However, the specific strength of the 3D printed composite material is higher than those of 1XXX and 3XXX aluminum alloys. Rib thickness was characterized by the highest effect on both strength and specific strength while the cell height results in the lowest contribution. Finally, optical and scanning electron microscopies were carried out in order to analyze the fractured ribs and to obtain high magnification three-dimensional topography of fractured surfaces after buckling. The effect of moisture content on polyamide reinforced composites and the comparison between 3D printed and traditionally produced isogrid structures will be investigated in future researches

    Life Cycle Assessment of Home Smart Objects: Kitchen Hood Cases

    Get PDF
    Abstract Promoting a more sustainable and energy-saving economy is one of the main goal of the European Community. In this context, home appliance manufacturers are researching and developing more efficient and sustainable products. Home automation and smart objects, by implementing specific energy management strategies, can significantly reduce energy waste. This paper aims to investigate the benefits offered, in terms of environmental impacts, by a smart system for kitchen air treatment. The system is composed by two inter-connected smart devices: a kitchen hood and an additional aspiration system able to assure a constant indoor comfort minimizing energy consumption and heat losses. Three different configurations were analyzed and compared: conventional extractor kitchen hood, smart extractor kitchen hood, and smart filtrating kitchen hood with smart additional aspiration system. Results show that in comparison with a traditional hood, products equipped with smart devices present lower environmental impact, due to the optimization of their energy consumptions

    Effect of Geometric Parameters and Moisture Content on the Mechanical Performances of 3D-Printed Isogrid Structures in Short Carbon Fiber-Reinforced Polyamide

    Get PDF
    AbstractThe present paper aims at studying the effect of geometric parameters and moisture content on the mechanical performances of 3D-printed isogrid structures in short carbon fiber-reinforced polyamide (namely Carbon PA). Four different geometric isogrid configurations were manufactured, both in the undried and dried condition. The dried isogrid structures were obtained by removing the moisture from the samples through a heating at 120 °C for 4 h. To measure the quantity of removed moisture, samples were weighted before and after the drying process. Tensile tests on standard specimens and buckling tests on isogrid panels were performed. Undried samples were tested immediately after 3D printing. It was observed that the dried samples are characterized by both Young modulus and ultimate tensile strength values higher than those provided by the undried samples. Similar results were obtained by the compression tests since, for a given geometric isogrid configuration, an increase in the maximum load of the dried structure was detected as compared to the undried one. Such discrepancy tends to increase as the structure with the lowest thickness value investigated is considered. Finally, scanning electron microscopy was carried out in order to analyze the fractured samples and to obtain high magnification three-dimensional topography of fractured surfaces after testing

    Deformation behavior of pre-painted steel sheets

    Get PDF
    Abstract The present work aims at studying the tensile behaviour of a hot-dip galvanized Z100 steel sheet, coated with a silicone-modified polyester resin. To this purpose, the pre-painted steel sheet was subjected to interrupted tensile tests at different strain levels in order to evaluate the elongation capability of both paint coating and steel sheet. The occurrence of superficial damages on paint coating was detected and the damage evolution before the sample fracture was analyzed. Furthermore, the thinning of each layer of the pre-painted sheet was also evaluated as a function of strain levels. Before the onset of necking, the degree of thinning on the different layers is almost uniform, whilst, once the necking was reached, a noticeable reduction in the thickness of both paint and steel sheet can be observed in the central zone of tensile sample

    Buckling behavior of 3D printed composite isogrid structures

    Get PDF
    Abstract Different 3D printed composite isogrid structures in polyamide reinforced with 20% in weight of short carbon fiber were manufactured by means of fused deposition modeling process. Six configurations were realized varying the rib width and the rib thickness of the structures. The isogrid panels were tested under compressive load in order to investigate the effect of geometric parameters on the buckling behavior, in terms of strength and specific strength. Different failure modes were identified, depending on geometric parameters: global and local buckling. Finally, optical microscopy was carried out in order to analyze the fractured ribs after buckling. It was demonstrated that the configurations which result in the highest strength are not the same of those providing the highest specific strength

    Stereoselectivity and electrostatics in charge-transfer Mn- and Cs-TCNQ4 networks on Ag(100)

    Get PDF
    Controlling supramolecular self-assembly is a fundamental step towards molecular nanofabrication, which involves a formidable reverse engineering problem. It is known that a variety of structures are efficiently obtained by assembling appropriate organic molecules and transition metal atoms on well-defined substrates. Here we show that alkali atoms bring in new functionalities compared with transition metal atoms because of the interplay of local chemical bonding and long-range forces. Using atomic-resolution microscopy and theoretical modelling, we investigate the assembly of alkali (Cs) and transition metals (Mn) co-adsorbed with 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules, forming chiral superstructures on Ag(100). Whereas Mn-TCNQ4 domains are achiral, Cs-TCNQ4 forms chiral islands. The specific behaviour is traced back to the different nature of the Cs- and Mn-TCNQ bonding, opening a novel route for the chiral design of supramolecular architectures. Moreover, alkali atoms provide a means to modify the adlayer electrostatic properties, which is important for the design of metal–organic interfaces

    Early Progression in Non-Small Cell Lung Cancer (NSCLC) with High PD-L1 Treated with Pembrolizumab in First-Line Setting: A Prognostic Scoring System Based on Clinical Features

    Get PDF
    Background: Pembrolizumab is approved in monotherapy for the first-line (1L) of advanced or metastatic NSCLC patients with high PD-L1 (≥50%). Despite a proportion of patients achieve long-term survival, about one-third of patients experience detrimental survival outcomes, including early death, hyperprogression, and fast progression. The impact of clinical factors on early progression (EP) development has not been widely explored. Methods: We designed a retrospective, multicenter study involving five Italian centers, in patients with metastatic NSCLC with PD-L1 ≥ 50%, treated with Pembrolizumab in a 1L setting. EP was defined as a progressive disease within three months from pembrolizumab initiation. Baseline clinical factors of patients with and without EP were collected and analyzed. Logistic regression was performed to identify clinical factors associated with EP and an EP prognostic score was developed based on the logistic model. Results: Overall, 321 out of 336 NSCLC patients treated with 1L pembrolizumab provided all the data for the analysis. EP occurred in 137 (42.7%) patients; the median PFS was 3.8 months (95% CI: 2.9–4.7), and median OS was not reached in the entire study population. Sex, Eastern Cooperative Oncology Group (ECOG) performance status (PS), steroids, metastatic sites ≥2, and the presence of liver/pleural metastasis were confirmed as independent factors for EP by multivariate analysis. By combining these factors, we developed an EP prognostic score ranging from 0–13, with three-risk group stratification: 0–2 (good prognosis), 3–6 (intermediate prognosis), and 7–13 (poor prognosis). The area under the curve (AUC) of the model was 0.76 (95% CI: 0.70–0.81). Conclusions: We identified six clinical factors independently associated with EP. We developed a prognostic score model for EP-risk to potentially improve clinical practice and patient selection for 1L pembrolizumab in NSCLC with high PD-L1, in the real-world clinical setting
    • …
    corecore