16 research outputs found

    Manipulation Framework for Compliant Humanoid COMAN: Application to a Valve Turning Task

    Get PDF
    With the purpose of achieving a desired interaction performance for our compliant humanoid robot (COMAN), in this paper we propose a semi-autonomous control framework and evaluate it experimentally in a valve turning setup. The control structure consists of various modules and interfaces to identify the valve, locate the robot in front of it and perform the manipulation. The manipulation module implements four motion primitives (Reach, Grasp, Rotate and Disengage) and realizes the corresponding desired impedance profile for each phase to accomplish the task. In this direction, to establish a stable and compliant contact between the valve and the robot hands, while being able to generate the sufficient rotational torques depending on the valve's friction, Rotate incorporates a novel dual-arm impedance control technique to plan and realize a task-appropriate impedance profile. Results of the implementation of the proposed control framework are firstly evaluated in simulation studies using Gazebo. Subsequent experimental results highlight the efficiency of the proposed impedance planning and control in generation of the required interaction forces to accomplish the task

    A modular approach for remote operation of humanoid robots in search and rescue scenarios

    Get PDF
    In the present work we have designed and implemented a modular, robust and user-friendly Pilot Interface meant to control humanoid robots in rescue scenarios during dangerous missions. We follow the common approach where the robot is semi-autonomous and it is remotely controlled by a human operator. In our implementation, YARP is used both as a communication channel for low-level hardware components and as an interconnecting framework between control modules. The interface features the capability to receive the status of these modules continuously and request actions when required. In addition, ROS is used to retrieve data from different types of sensors and to display relevant information of the robot status such as joint positions, velocities and torques, force/torque measurements and inertial data. Furthermore the operator is immersed into a 3D reconstruction of the environment and is enabled to manipulate 3D virtual objects. The Pilot Interface allows the operator to control the robot at three different levels. The high-level control deals with human-like actions which involve the whole robot’s actuation and perception. For instance, we successfully teleoperated IIT’s COmpliant huMANoid (COMAN) platform to execute complex navigation tasks through the composition of elementary walking commands (e.g.[walk_forward, 1m]). The mid-level control generates tasks in cartesian space, based on the position and orientation of objects of interest (i.e. valve, door handle) w.r.t. a reference frame on the robot. The low level control operates in joint space and is meant as a last resort tool to perform fine adjustments (e.g. release a trapped limb). Finally, our Pilot Interface is adaptable to different tasks, strategies and pilot’s needs, thanks to a modular architecture of the system which enables to add/remove single front-end components (e.g. GUI widgets) as well as back-end control modules on the fly

    Yarp Based Plugins for Gazebo Simulator

    Get PDF
    This paper presents a set of plugins for the Gazebo simulator that enables the interoperability between a robot, controlled using the YARP framework, and Gazebo itself. Gazebo is an open-source simulator that can handle different Dynamic Engines (ODE, DART, Bullet, SimBody), backed up by the Open Source Robotics Foundation (OSRF) and supported by a very large community. Since our plugins conform with the YARP layer used on the real robot, applications written for our robots, COMAN and iCub, can be run on the simulator with no changes. Our plugins have two main components: a YARP interface with the same API as the real robot interface, and a Gazebo plugin which handles simulated joints, encoders, IMUs, force/torque sensors and synchronization. The robot model is provided to the simulator by means of an SDF file, which describes all the geometric, dynamic and visual characteristics of a robot. Once the SDF is read from Gazebo, our plugins are loaded and associated with the simulated robot model and the simulated world. Different modules for COMAN and iCub have been developed using Gazebo and our plugins as a testbed: joint impedance control plus gravity compensation, dual arm Cartesian control for manipulation tasks, dynamic walking, etc. This work has been developed as part of a joint effort between three different European Projects “WALKMAN”, “CoDyCo” and “SoftHands” aiming at implementing a common simulation platform to develop and test algorithms for our robotic platforms. This work is available as open-source to all the researchers in the YARP community (https://github.com/robotology/gazebo_yarp_plugins)

    Upper-body Impedance Control with an Intuitive Stiffness Emulation for a Door Opening Task

    No full text
    The advent of humanoids has brought new challenges in the real-world application. As a part of ongoing efforts to foster functionality of the robot accommodating a real environment, this paper introduces a recent progress on a door opening task with our compliant humanoid, CoMan. We presents a task-prioritized impedance control framework for an upper body system that includes a dual-arm, a waist, two soft hands, and 3D camera. Aimed to create desired responses to open the door, a novel stiffness modulation method is proposed, incorporating a realtime optimization. As a preliminary experiment, a full door-opening scenario (approaching to the door and reaching, grasping, rotating and pulling the door handle) is demonstrated under a semi-autonomous operation with a pilot. The experimental result shows the effectiveness and efficacy of the proposed impedance control approach. Despite of uncertainties from sensory data, the door opening task is successfully achieved and safe and robust interaction is established without creating excessive forces

    Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca<sup>2+</sup> Elevations in <i>Arabidopsis thaliana</i>

    No full text
    Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants. To this aim, Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with PAW generated by a plasma torch. Ca2+ measurement assays demonstrated the induction by PAW of rapid and sustained cytosolic Ca2+ elevations in Arabidopsis seedlings. The dynamics of the recorded Ca2+ signals were found to depend upon different parameters, such as the operational conditions of the torch, PAW storage, and dilution. The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures. Unveiling the signalling mechanisms underlying plant perception of PAW may allow to finely tune its generation for applications in agriculture, with potential advantages in the perspective of a more sustainable agriculture

    Plasma-Activated Water Triggers Rapid and Sustained Cytosolic Ca2+ Elevations in Arabidopsis thaliana

    No full text
    Increasing evidence indicates that water activated by plasma discharge, termed as plasma-activated water (PAW), can promote plant growth and enhance plant defence responses. Nevertheless, the signalling pathways activated in plants in response to PAW are still largely unknown. In this work, we analysed the potential involvement of calcium as an intracellular messenger in the transduction of PAW by plants. To this aim, Arabidopsis thaliana (Arabidopsis) seedlings stably expressing the bioluminescent Ca2+ reporter aequorin in the cytosol were challenged with PAW generated by a plasma torch. Ca2+ measurement assays demonstrated the induction by PAW of rapid and sustained cytosolic Ca2+ elevations in Arabidopsis seedlings. The dynamics of the recorded Ca2+ signals were found to depend upon different parameters, such as the operational conditions of the torch, PAW storage, and dilution. The separate administration of nitrate, nitrite, and hydrogen peroxide at the same doses as those measured in the PAW did not trigger any detectable Ca2+ changes, suggesting that the unique mixture of different reactive chemical species contained in the PAW is responsible for the specific Ca2+ signatures. Unveiling the signalling mechanisms underlying plant perception of PAW may allow to finely tune its generation for applications in agriculture, with potential advantages in the perspective of a more sustainable agriculture
    corecore