391 research outputs found

    PacDOCK: A Web Server for Positional Distance-Based and Interaction-Based Analysis of Docking Results

    Get PDF
    Molecular docking is a key method for structure-based drug design used to predict the conformations assumed by small drug-like ligands when bound to their target. However, the evaluation of molecular docking studies can be hampered by the lack of a free and easy to use platform for the complete analysis of results obtained by the principal docking programs. To this aim, we developed PacDOCK, a freely available and user-friendly web server that comprises a collection of tools for positional distance-based and interaction-based analysis of docking results, which can be provided in several file formats. PacDOCK allows a complete analysis of molecular docking results through root mean square deviation (RMSD) calculation, molecular visualization, and cluster analysis of docked poses. The RMSD calculation compares docked structures with a reference structure, also when atoms are randomly labelled, and their conformational and positional differences can be visualised. In addition, it is possible to visualise a ligand into the target binding pocket and investigate the key receptor-ligand interactions. Moreover, PacDOCK enables the clustering of docking results by identifying a restrained number of clusters from many docked poses. We believe that PacDOCK will contribute to facilitating the analysis of docking results to improve the efficiency of computer-aided drug design

    Dermoid cysts of the asterion. an unusual location for unusual dermoids, radiological findings and neurosurgical implications

    Get PDF
    Asterion is an uncommon site for lesions, especially dermoid cysts. We report a case series of three asterional intracranial dermoid cysts, which, to the best of our knowledge, have never been described before. Patients presented with non-specific symptoms and underwent surgical excision of the lesions. It is crucial to correctly diagnose intracranial masses and to identify their relationships with surrounding anatomical structures, especially if the location is unusual as the asterion, to plan surgery. The challenge of this tumor location is to preserve the venous drainage system during surgical procedures, because of the contiguity between the asterion and the transverse–sigmoid junction. Rupturing or damaging of the venous drainage system have been proven to be catastrophic because they lengthen surgical time and present dire consequences for patients. In conclusion, it is crucial to familiarize with atypical dermoid presentation to ensure proper diagnoses and to perform adequate imaging for optimal surgical plannin

    Oxytocin and fear memory extinction:possible implications for the therapyof fear disorders?

    Get PDF
    Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions

    Protective effects of the postbiotic deriving from cow's milk fermentation with L. paracasei CBA L74 against Rotavirus infection in human enterocytes

    Get PDF
    : Rotavirus (RV) is the leading cause of acute gastroenteritis-associated mortality in early childhood. Emerging clinical evidence suggest the efficacy of the postbiotic approach based on cow's milk fermentation with the probiotic Lacticaseibacillus paracasei CBAL74 (FM-CBAL74) in preventing pediatric acute gastroenteritis, but the mechanisms of action are still poorly characterized. We evaluated the protective action of FM-CBAL74 in an in vitro model of RV infection in human enterocytes. The number of infected cells together with the relevant aspects of RV infection were assessed: epithelial barrier damage (tight-junction proteins and transepithelial electrical resistance evaluation), and inflammation (reactive oxygen species, pro-inflammatory cytokines IL-6, IL-8 and TNF-α, and mitogen-activated protein kinase pathway activation). Pre-incubation with FM-CBA L74 resulted in an inhibition of epithelial barrier damage and inflammation mediated by mitogen-activated protein kinase pathway activation induced by RV infection. Modulating several protective mechanisms, the postbiotic FM-CBAL74 exerted a preventive action against RV infection. This approach could be a disrupting nutritional strategy against one of the most common killers for the pediatric age

    Comparison of Oxidative Stress Effects on Senescence Patterning of Human Adult and Perinatal Tissue-Derived Stem Cells in Short and Long-term Cultures

    Get PDF
    Human Mesenchymal Stem Cells (hMSCs) undergo senescence in lifespan. In most clinical trials, hMSCs experience long-term expansion ex vivo to increase cell number prior to transplantation, which unfortunately leads to cell senescence, hampering post-transplant outcomes.Hydrogen peroxide (H2O2) in vitro represents a rapid, time and cost-effective tool, commonly used as oxidative stress tantalizing the stem cell ability to cope with a hostile environment, recapitulating the onset and progression of cellular senescence.Here, H2O2 at different concentrations (ranging from 50 to 400 mu M) and time exposures (1 or 2 hours - h), was used for the first time to compare the behavior of human Adipose tissue-derived Stem Cells (hASCs) and human Wharton's Jelly-derived MSCs (hWJ-MSCs), as representative of adult and perinatal tissue-derived stem cells, respectively. We showed timely different responses of hASCs and hWJ-MSCs at low and high subculture passages, concerning the cell proliferation, the cell senescence-associated beta-Galactosidase activity, the capability of these cells to undergo passages, the morphological changes and the gene expression of tumor protein p53 (TP53, alias p53) and cyclin dependent kinase inhibitor IA (CDKN IA, alias p21) post H2O2 treatments.The comparison between the hASC and hWJ-MSC response to oxidative stress induced by H2O2 is a useful tool to assess the biological mechanisms at the basis of hMSC senescence, but it could also provide two models amenable to test in vitro putative anti-senescence modulators and develop anti-senescence strategies

    Static modelling of geological structures for carbon sequestration purposes in the Lorestan area of Iran

    Get PDF
    One of the most important methods aimed at climate mitigation technology is carbon geological sequestration. During the process of site selection and characterization required for evaluation of capacity storage potential of a given region, geological static modelling plays an essential role by providing a better understanding of the structure in terms of petrophysical and geological characteristics. This work presents the 3D geological model of several anticlines in the Lorestan area (northwestern Zagros), to evaluate their carbon storage capacity potential. The 3D geological model is based on seismic data and well-log data from 2 wells drilled in the area, kindly provided by the National Iranian Oil company (NIOC). Preliminary well logs analysis allowed to identify potential target formations by considering pivotal criteria of CO2 storage such as depth, porosity, and other petrophysical characteristics. The 3D model will be followed by the construction of a geocellular model that will be populated by petrophysical data obtained from well logs. The reconstructed volume will be then used for injection simulations to obtain an evaluation of the volume available for storage. The dynamic simulation will also provide and support the evaluation of other important aspects such as the injection strategies and efficiency coefficient, comparing the observed theoretical and effective capacity

    Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study

    Get PDF
    BACKGROUND: The normobaric oxygen paradox states that a short exposure to normobaric hyperoxia followed by rapid return to normoxia creates a condition of 'relative hypoxia' which stimulates erythropoietin (EPO) production. Alterations in glutathione and reactive oxygen species (ROS) may be involved in this process. We tested the effects of short-term hyperoxia on EPO levels and the microcirculation in critically ill patients.METHODS: In this prospective, observational study, 20 hemodynamically stable, mechanically ventilated patients with inspired oxygen concentration (FiO2) \ue2\u89\ua40.5 and PaO2/FiO2\ue2\u80\u89\ue2\u89\ua5\ue2\u80\u89200\uc2\ua0mmHg underwent a 2-hour exposure to hyperoxia (FiO2 1.0). A further 20 patients acted as controls. Serum EPO was measured at baseline, 24\uc2\ua0h and 48\uc2\ua0h. Serum glutathione (antioxidant) and ROS levels were assessed at baseline (t0), after 2\uc2\ua0h of hyperoxia (t1) and 2\uc2\ua0h after returning to their baseline FiO2 (t2). The microvascular response to hyperoxia was assessed using sublingual sidestream dark field videomicroscopy and thenar near-infrared spectroscopy with a vascular occlusion test.RESULTS: EPO increased within 48\uc2\ua0h in patients exposed to hyperoxia from 16.1 [7.4-20.2] to 22.9 [14.1-37.2] IU/L (p\ue2\u80\u89=\ue2\u80\u890.022). Serum ROS transiently increased at t1, and glutathione increased at t2. Early reductions in microvascular density and perfusion were seen during hyperoxia (perfused small vessel density: 85% [95% confidence interval 79-90] of baseline). The response after 2\uc2\ua0h of hyperoxia exposure was heterogeneous. Microvascular perfusion/density normalized upon returning to baseline FiO2.CONCLUSIONS: A two-hour exposure to hyperoxia in critically ill patients was associated with a slight increase in EPO levels within 48\uc2\ua0h. Adequately controlled studies are needed to confirm the effect of short-term hyperoxia on erythropoiesis.TRIAL REGISTRATION: ClinicalTrials.gov ( www.clinicaltrials.gov ), NCT02481843 , registered 15th June 2015, retrospectively registered

    Analysis of the gastrin-releasing peptide receptor gene in Italian patients with autism spectrum disorders

    Get PDF
    The gastrin-releasing peptide receptor (GRPR) was implicated for the first time in the pathogenesis of Autism spectrum disorders (ASD) by Ishikawa-Brush et al. [Ishikawa-Brush et al. (1997): Hum Mol Genet 6: 1241-1250]. Since this original observation, only one association study [Marui et al. (2004): Brain Dev 26: 5-7] has further investigated, though unsuccessfully, the involvement of the GRPR gene in ASD. With the aim of contributing further information to this topic we have sequenced the entire coding region and the intron/exon junctions of the GRPR gene in 149 Italian autistic patients. The results of this study led to the identification of four novel point mutations, two of which, that is, C6S and L181F, involve amino acid changes identified in two patients with ASD and Rett syndrome, respectively. Both the leucine at position 181 and the cysteine at position 6 are strongly conserved in vertebrates. C6S and L181F mutant proteins were expressed in COS-7 and BALB/3T3 cells, but they did not affect either GRP's binding affinity or its potency for stimulating phospholipase C-mediated production of inositol 1,4,5-trisphosphate. In summary, our results do not provide support for a major role of the GRPR gene in ASD in the population of patients we have studied. However, there is a potential role of C6S and L181F mutations on GRPR function, and possibly in the pathogenesis of the autistic disorders in the two patient

    miR-181a/b downregulation exerts a protective action on mitochondrial disease models.

    Get PDF
    Mitochondrial diseases (MDs) are a heterogeneous group of devastating and often fatal disorders due to defective oxidative phosphorylation. Despite the recent advances in mitochondrial medicine, effective therapies are still not available for these conditions. Here, we demonstrate that the microRNAs miR-181a and miR-181b (miR-181a/b) regulate key genes involved in mitochondrial biogenesis and function and that downregulation of these miRNAs enhances mitochondrial turnover in the retina through the coordinated activation of mitochondrial biogenesis and mitophagy. We thus tested the effect of miR-181a/b inactivation in different animal models of MDs, such as microphthalmia with linear skin lesions and Leber\u27s hereditary optic neuropathy. We found that miR-181a/b downregulation strongly protects retinal neurons from cell death and significantly ameliorates the disease phenotype in all tested models. Altogether, our results demonstrate that miR-181a/b regulate mitochondrial homeostasis and that these miRNAs may be effective gene-independent therapeutic targets for MDs characterized by neuronal degeneration
    • …
    corecore