29 research outputs found

    Dual-View Single-Shot Multibox Detector at Urban Intersections: Settings and Performance Evaluation

    Get PDF
    The explosion of artificial intelligence methods has paved the way for more sophisticated smart mobility solutions. In this work, we present a multi-camera video content analysis (VCA) system that exploits a single-shot multibox detector (SSD) network to detect vehicles, riders, and pedestrians and triggers alerts to drivers of public transportation vehicles approaching the surveilled area. The evaluation of the VCA system will address both detection and alert generation performance by combining visual and quantitative approaches. Starting from a SSD model trained for a single camera, we added a second one, under a different field of view (FOV) to improve the accuracy and reliability of the system. Due to real-time constraints, the complexity of the VCA system must be limited, thus calling for a simple multi-view fusion method. According to the experimental test-bed, the use of two cameras achieves a better balance between precision (68%) and recall (84%) with respect to the use of a single camera (i.e., 62% precision and 86% recall). In addition, a system evaluation in temporal terms is provided, showing that missed alerts (false negatives) and wrong alerts (false positives) are typically transitory events. Therefore, adding spatial and temporal redundancyincreases the overall reliability of the VCA system

    A novel method to derive personalized minimum viable recommendations for type 2 diabetes prevention based on counterfactual explanations

    Get PDF
    Despite the growing availability of artificial intelligence models for predicting type 2 diabetes, there is still a lack of personalized approaches to quantify minimum viable changes in biomarkers that may help reduce the individual risk of developing disease. The aim of this article is to develop a new method, based on counterfactual explanations, to generate personalized recommendations to reduce the one-year risk of type 2 diabetes. Ten routinely collected biomarkers extracted from Electronic Medical Records of 2791 patients at low risk and 2791 patients at high risk of type 2 diabetes were analyzed. Two regions characterizing the two classes of patients were estimated using a Support Vector Data Description classifier. Counterfactual explanations (i.e., minimal changes in input features able to change the risk class) were generated for patients at high risk and evaluated using performance metrics (availability, validity, actionability, similarity, and discriminative power) and a qualitative survey administered to seven expert clinicians. Results showed that, on average, the requested minimum viable changes implied a significant reduction of fasting blood sugar, systolic blood pressure, and triglycerides and a significant increase of high-density lipoprotein in patients at risk of diabetes. A significant reduction in body mass index was also recommended in most of the patients at risk, except in females without hypertension. In general, greater changes were recommended in hypertensive patients compared to non-hypertensive ones. The experts were overall satisfied with the proposed approach although in some cases the proposed recommendations were deemed insufficient to reduce the risk in a clinically meaningful way. Future research will focus on a larger set of biomarkers and different comorbidities, also incorporating clinical guidelines whenever possible. Development of additional mathematical and clinical validation approaches will also be of paramount importance

    Evaluation of mobile apps for treatment of patients at risk of developing gestational diabetes

    Get PDF
    This study evaluates mobile apps using a theory-based evaluation framework to discover their applicability for patients at risk of gestational diabetes. This study assessed how well the existing mobile apps on the market meet the information and tracking needs of patients with gestational diabetes and evaluated the feasibility of how to integrate these apps into patient care. A search was conducted in the Apple iTunes and Google Play store for mobile apps that contained keywords related to the following concepts of nutrition: diet, tracking, diabetes, and pregnancy. Evaluation criteria were developed to assess the mobile apps on five dimensions. Overall, the apps scored well on education and information functions and scored poorly on engagement functions. There are few apps that provide comprehensive evidence-based educational content, tracking tools, and integration with electronic health records. This study demonstrates the need to develop apps that have comprehensive content, tracking tools, and ability to bidirectionally share data

    Evaluation of Machine Learning Algorithms and Explainability Techniques to Detect Hearing Loss From a Speech-in-Noise Screening Test

    Get PDF
    Purpose: The aim of this study was to analyze the performance of multivariate machine learning (ML) models applied to a speech-in-noise hearing screening test and investigate the contribution of the measured features toward hearing loss detection using explainability techniques. Method: Seven different ML techniques, including transparent (i.e., decision tree and logistic regression) and opaque (e.g., random forest) models, were trained and evaluated on a data set including 215 tested ears (99 with hearing loss of mild degree or higher and 116 with no hearing loss). Post hoc explainability techniques were applied to highlight the role of each feature in predicting hearing loss. Results: Random forest (accuracy = .85, sensitivity = .86, specificity = .85, precision = .84) performed, on average, better than decision tree (accuracy = .82, sensitivity = .84, specificity = .80, precision = .79). Support vector machine, logistic regression, and gradient boosting had similar performance as random forest. According to post hoc explainability analysis on models generated using random forest, the features with the highest relevance in predicting hearing loss were age, number and percentage of correct responses, and average reaction time, whereas the total test time had the lowest relevance. Conclusions: This study demonstrates that a multivariate approach can help detect hearing loss with satisfactory performance. Further research on a bigger sample and using more complex ML algorithms and explainability techniques is needed to fully investigate the role of input features (including additional features such as risk factors and individual responses to low-/high-frequency stimuli) in predicting hearing loss.publishedVersionPeer reviewe

    Introduction to the AJA

    No full text

    Introduction to the AJA

    No full text

    Automated Characterization of Mobile Health Apps' Features by Extracting Information From the Web: An Exploratory Study

    No full text
    Purpose: The aim of this study was to test the viability of a novel method for automated characterization of mobile health apps. Method: In this exploratory study, we developed the basic modules of an automated method, based on text analytics, able to characterize the apps' medical specialties by extracting information from the web. We analyzed apps in the Medical and Health & Fitness categories on the U.S. iTunes store. Results: We automatically crawled 42,007 Medical and 79,557 Health & Fitness apps' webpages. After removing duplicates and non-English apps, the database included 80,490 apps. We tested the accuracy of the automated method on a subset of 400 apps. We observed 91% accuracy for the identification of apps related to health or medicine, 95% accuracy for sensory systems apps, and an average of 82% accuracy for classification into medical specialties. Conclusions: These preliminary results suggested the viability of automated characterization of apps based on text analytics and highlighted directions for improvement in terms of classification rules and vocabularies, analysis of semantic types, and extraction of key features (promoters, services, and users). The availability of automated tools for app characterization is important as it may support health care professionals in informed, aware selection of health apps to recommend to their patients

    Automated identification of health apps' medical specialties and promoters from the store webpages

    No full text
    The aim of this study was to develop automated methods, based on text analytics, for extracting information from the apps' webpages on the app stores and identify relevant apps' features such as the medical specialty and promoter. In this preliminary study, we classified a sample of more than 66000 apps from the US iTunes store into 18 medical specialties and seven types of promoters. Of the â\u88¼66000 apps analyzed over 18 specialties, we found that 24.1% were relevant to Nutrition, 23.9% to General Medicine, and 15.7% to Pharmacology, whereas less than 1.5% of apps were relevant to specialties such as Rheumatology, Radiology, Diabetes, Respiratory, Vision, and Sleep Healthcare. The analysis of promoters showed that Manufacturers and Software Houses and Independent Developers promoted 99% of apps combined, whereas promoters in the healthcare and science areas (e.g., Government Services, Healthcare Providers, or Scientific and Educational Organizations) still play a minor role. This study highlighted interesting trends and open opportunities in the field of health apps and suggested that the proposed approach might be a basis for future developments of support tools for informed, aware selection and adoption of health apps by patients and healthcare professionals
    corecore