9 research outputs found

    Microwave Irradiation Effects on Random Telegraph Signal in a MOSFET

    Full text link
    We report on the change of the characteristic times of the random telegraph signal (RTS) in a MOSFET operated under microwave irradiation up to 40 GHz as the microwave field power is raised. The effect is explained by considering the time dependency of the transition probabilities due to a harmonic voltage generated by the microwave field that couples with the wires connecting the MOSFET. From the dc current excited into the MOSFET by the microwave field we determine the corresponding equivalent drain voltage. The RTS experimental data are in agreement with the prediction obtained with the model, making use of the voltage data measured with the independent dc microwave induced current. We conclude that when operating a MOSFET under microwave irradiation, as in single spin resonance detection, one has to pay attention into the effects related to microwave irradiation dependent RTS changes.Comment: 3 pages, 4 figure

    Friction Stir Processing on the Tribological, Corrosion, and Erosion Properties of Steel: A Review

    No full text
    The eventual material degradation of steel components in bio-implant, marine, and high-temperature applications is a critical issue that can have widespread negative ramifications from a safety and economic point of view. Stemming from their tribological, corrosion, and erosion-based properties, there is an increasing need to address these issues effectively. As one solution, surface processing techniques have been proposed to improve these properties. However, common techniques tend to suffer from issues spanning from their practicality to their high costs and negative environmental impacts. To address these issues, friction-stir-processing (FSP) has been one technique that has been increasingly utilized due to its cost effective, non-polluting nature. By inducing large amounts of strain and plastic deformation, dynamic recrystallization occurs which can largely influence the tribological, corrosion, and erosion properties via surface hardening, grain refinement, and improvement to passive layer formation. This review aims to accumulate the current knowledge of steel FSP and to breakdown the key factors which enable its metallurgical improvement. Having this understanding, a thorough analysis of these processing variables in relation to their tribological, corrosion, and erosion properties is presented. We finally then prospect future directions for this research with suggestions on how this research can continue to expand

    Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review

    No full text
    Recently, additive manufacturing (AM) has gained much traction due to its processing advantages over traditional manufacturing methods. However, there are limited studies which focus on process optimization for surface quality of AM materials, which can dictate mechanical, thermal, and tribological performance. For example, in heat-transfer applications, increased surface quality is advantageous for reducing wear rates of vibrating tubes as well as increasing the heat-transfer rates of contacting systems. Although many post-processing and in situ manufacturing techniques are used in conjunction with AM techniques to improve surface quality, these processes are costly and time-consuming compared to optimized processing techniques. With improved as-built surface quality, particles tend to be better fused, which allows for greater wear resistance from contacting tube surfaces. Additionally, improved surface quality can reduce the entropy and exergy generated from flowing fluids, in turn increasing the thermodynamic efficiency of heat-transferring devices. This review aims to summarize the process-optimizing methods used in AM for metal-based heat exchangers and the importance of as-built surface quality to its performance and long-term energy conservation. The future directions and current challenges of this field will also be covered, with suggestions on how research in this topic can be improved

    Solid-State Cold Spray Additive Manufacturing of Ni-Based Superalloys: Processing–Microstructure–Property Relationships

    No full text
    Ni-based superalloys have been extensively employed in the aerospace field because of their excellent thermal and mechanical stabilities at high temperatures. With these advantages, many sought to study the influence of fusion-reliant additive manufacturing (AM) techniques for part fabrication/reparation. However, their fabrication presents many problems related to the melting and solidification defects from the feedstock material. Such defects consist of oxidation, inclusions, hot tearing, cracking, and elemental segregation. Consequentially, these defects created a need to discover an AM technique that can mitigate these disadvantages. The cold spray (CS) process is one additive technique that can mitigate these issues. This is largely due to its cost-effectiveness, low temperature, and fast and clean deposition process. However, its effectiveness for Ni-based superalloy fabrication and its structural performance has yet to be determined. This review aimed to fill this knowledge gap in two different ways. First, the advantages of CS technology for Ni-based superalloys compared with thermal-reliant AM techniques are briefly discussed. Second, the processing–structure–property relationships of these deposits are elucidated from microstructural, mechanical, and tribological (from low to high temperatures) perspectives. Considering the porous and brittle defects of CS coatings, a comprehensive review of the post-processing techniques for CS-fabricated Ni superalloys is also introduced. Based on this knowledge, the key structure-property mechanisms of CS Ni superalloys are elucidated with suggestions on how knowledge gaps in the field can be filled in the near future

    Tribological, Corrosion, and Mechanical Properties of Selective Laser Melted Steel

    No full text
    In additive manufacturing (AM), selective laser melting (SLM) is a relatively novel technique that utilizes thermal energy via laser beams to melt and solidify metallic powders into three-dimensional components. Compared to traditional manufacturing techniques, SLM is advantageous because it is more time-efficient, cost-effective, and allows for the fabrication of components with superior mechanical, tribological, and corrosion performances. However, much of the existing literature highlights the influence of SLM on softer materials such as aluminum or magnesium due to their thermal expansion coefficients rather than on materials such as steel. This review aims to encapsulate the existing literature on SLM steel and understand the factors that allow for its fabrication and the underlying mechanisms that dictate its mechanical, tribological, and corrosion performance. By understanding the trends of laser energy density (LED), scanning patterns, and building directions for these properties, a comprehensive understanding of SLM steel can be achieved. Additionally, through this understanding, the future directions of this research and suggestions will be provided to continue progressing the field in an impactful direction

    Tribological, Corrosion, and Mechanical Properties of Selective Laser Melted Steel

    No full text
    In additive manufacturing (AM), selective laser melting (SLM) is a relatively novel technique that utilizes thermal energy via laser beams to melt and solidify metallic powders into three-dimensional components. Compared to traditional manufacturing techniques, SLM is advantageous because it is more time-efficient, cost-effective, and allows for the fabrication of components with superior mechanical, tribological, and corrosion performances. However, much of the existing literature highlights the influence of SLM on softer materials such as aluminum or magnesium due to their thermal expansion coefficients rather than on materials such as steel. This review aims to encapsulate the existing literature on SLM steel and understand the factors that allow for its fabrication and the underlying mechanisms that dictate its mechanical, tribological, and corrosion performance. By understanding the trends of laser energy density (LED), scanning patterns, and building directions for these properties, a comprehensive understanding of SLM steel can be achieved. Additionally, through this understanding, the future directions of this research and suggestions will be provided to continue progressing the field in an impactful direction

    Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy

    No full text
    For the first time, Zr702 coatings were deposited onto an Al6061 alloy using a high-pressure cold spray (HPCS) system. In this work, five different N2 process gas temperatures between 700 and 1100 °C were employed to understand the formation of cold sprayed (CS) Zr coatings and their feasibility for enhanced wear resistance. Results indicated that the N2 processing gas temperature of about 1100 °C enabled a higher degree of particle thermal softening, which created a dense, robust, oxide- and defect-free Zr coating. Across all CS Zr coatings, there was a refinement of crystallinity, which was attributed to the severe localized plastic deformation of the powder particles. The enhanced thermal boost up zone at the inter-particle boundaries and decreased recoverable elastic strain were accountable for the inter-particle bonding of the coatings at higher process gas temperatures. The flattening ratio (ε) increased as a function of temperature, implying that there was a greater degree of plastic deformation at higher N2 gas temperatures. The microhardness readings and wear volume of the coatings were also improved as a function of process gas temperature. In this work, the wear of the Al6061 alloy substrate was mainly plowing-based, whereas the Zr CS substrates demonstrated a gradual change of abrasive to adhesive wear. From our findings, the preparation of CS Zr coatings was a feasible method of enhancing the wear resistance of Al-based alloys
    corecore