83 research outputs found

    Tutela de las minorías lingüísticas y competencia legislativa regional

    Get PDF

    Problemas jurídicos del uso de las lenguas en Italia

    Get PDF

    Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System

    Get PDF
    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a "maladaptive" strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke

    Long-term beneficial impact of the randomised trial 'Train the Brain', a motor/cognitive intervention in mild cognitive impairment people: effects at the 14-month follow-up

    Get PDF
    : No treatment options are currently available to counteract cognitive deficits and/or delay progression towards dementia in older people with mild cognitive impairment (MCI). The 'Train the Brain' programme is a combined motor and cognitive intervention previously shown to markedly improve cognitive functions in MCI individuals compared to non-trained MCI controls, as assessed at the end of the 7-month intervention. Here, we extended the previous analyses to include the long-term effects of the intervention and performed a data disaggregation by gender, education and age of the enrolled participants. We report that the beneficial impact on cognitive functions was preserved at the 14-month follow-up, with greater effects in low-educated compared to high-educated individuals, and in women than in men

    {MEYE}: Web-app for translational and real-time pupillometry

    Get PDF
    Pupil dynamics alterations have been found in patients affected by a variety of neuropsychiatric conditions, in- cluding autism. Studies in mouse models have used pupillometry for phenotypic assessment and as a proxy for arousal. Both in mice and humans, pupillometry is noninvasive and allows for longitudinal experiments sup- porting temporal specificity; however, its measure requires dedicated setups. Here, we introduce a convolu- tional neural network that performs online pupillometry in both mice and humans in a web app format. This solution dramatically simplifies the usage of the tool for the nonspecialist and nontechnical operators. Because a modern web browser is the only software requirement, this choice is of great interest given its easy deployment and setup time reduction. The tested model performances indicate that the tool is sensitive enough to detect both locomotor-induced and stimulus-evoked pupillary changes, and its output is compara- ble to state-of-the-art commercial devicesPupil dynamics alterations have been found in patients affected by a variety of neuropsychiatric conditions, including autism. Studies in mouse models have used pupillometry for phenotypic assessment and as a proxy for arousal. Both in mice and humans, pupillometry is noninvasive and allows for longitudinal experiments supporting temporal specificity; however, its measure requires dedicated setups. Here, we introduce a convolutional neural network that performs online pupillometry in both mice and humans in a web app format. This solution dramatically simplifies the usage of the tool for the nonspecialist and nontechnical operators. Because a modern web browser is the only software requirement, this choice is of great interest given its easy deployment and setup time reduction. The tested model performances indicate that the tool is sensitive enough to detect both locomotor-induced and stimulus-evoked pupillary changes, and its output is comparable to state-of-the-art commercial devices

    Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System

    Get PDF
    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke
    corecore