56 research outputs found

    The Meaning of Immune Reconstitution after Alemtuzumab Therapy in Multiple Sclerosis

    Get PDF
    Alemtuzumab is a monoclonal antibody that binds to CD52, a protein present on the surface of mature lymphocytes, but not on the stem cells from which these lymphocytes are derived. It is currently used as an immune reconstitution therapy in patients with relapsing–remitting multiple sclerosis. Alemtuzumab treatment is an intermittent infusion that induces long-term remission of Multiple Sclerosis also in the treatment-free period. After the robust T and B cell depletion induced by alemtuzumab, the immune system undergoes radical changes during its reconstitution. In this review, we will discuss the current knowledge on the reconstitution of the lymphocyte repertoire after alemtuzumab treatment and how it could affect the development of side effects, which led to its temporary suspension by the European Medical Agency

    Humoral response after the booster dose of anti-SARS-CoV-2 vaccine in multiple sclerosis patients treated with high-efficacy therapies

    Get PDF
    Anti-SARS-CoV2 mRNA vaccines showed a blunted antibody (Ab) response in people with MS (pwMS) on high efficacy therapies, suggesting the need for a booster dose. We evaluated the kinetics of the production of anti-receptor binding domain (RBD) Immunoglobulins G (IgG) after the vaccination cycle and the booster in pwMS receiving ocrelizumab, fingolimod and cladribine. A significant increase of anti-RBD IgG seroconversion was observed after booster respect to the vaccination cycle. Results obtained from this study will be useful for the management of pwMS in relation to their disease modifying therapy (DMT) and for any future vaccination campaign

    The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View

    Get PDF
    Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS

    EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss

    Get PDF
    Objectives: Deaf subjects with hearing aids or cochlear implants generally find it challenging to understand speech in noisy environments where a great deal of listening effort and cognitive load are invested. In prelingually deaf children, such difficulties may have detrimental consequences on the learning process and, later in life, on academic performance. Despite the importance of such a topic, currently, there is no validated test for the assessment of cognitive load during audiological tasks. Recently, alpha and theta EEG rhythm variations in the parietal and frontal areas, respectively, have been used as indicators of cognitive load in adult subjects. The aim of the present study was to investigate, by means of EEG, the cognitive load of pediatric subjects affected by asymmetric sensorineural hearing loss as they were engaged in a speech-in-noise identifi- cation task. Methods: Seven children (4F and 3M, age range ¼ 8e16 years) affected by asymmetric sensorineural hearing loss (i.e. profound degree on one side, mild-to-severe degree on the other side) and using a hearing aid only in their better ear, were included in the study. All of them underwent EEG recording during a speech-in-noise identification task: the experimental conditions were quiet, binaural noise, noise to the better hearing ear and noise to the poorer hearing ear. The subjects' Speech Recognition Thresholds (SRT) were also measured in each test condition. The primary outcome measures were: frontal EEG Power Spectral Density (PSD) in the theta band and parietal EEG PSD in the alpha band, as assessed before stimulus (word) onset. Results: No statistically significant differences were noted among frontal theta power levels in the four test conditions. However, parietal alpha power levels were significantly higher in the “binaural noise” and in the “noise to worse hearing ear” conditions than in the “quiet” and “noise to better hearing ear” conditions (p < 0.001). SRT scores were consistent with task difficulty, but did not correlate with alpha and theta power level variations. Conclusion: This is the first time that EEG has been applied to children with sensorineural hearing loss with the purpose of studying the cognitive load during effortful listening. Significantly higher parietal alpha power levels in two of three noisy conditions, compared to the quiet condition, are consistent with increased cognitive load. Specifically, considering the time window of the analysis (pre-stimulus), parietal alpha power levels may be a measure of cognitive functions such as sustained attention and selective inhibition. In this respect, the significantly lower parietal alpha power levels in the most challenging listening condition (i.e. noise to the better ear) may be attributed to loss of attention and to the subsequent fatigue and “withdrawal” from the task at hand

    The Giant HECT E3 Ubiquitin Ligase HERC1 Is Aberrantly Expressed in Myeloid Related Disorders and It Is a Novel BCR-ABL1 Binding Partner

    Get PDF
    HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders
    • …
    corecore