42 research outputs found

    SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer

    Get PDF
    The balloon-borne LSPE mission is optimized to measure the linear polarization of the Cosmic Microwave Background at large angular scales. The Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components and filters cryogenically cooled below 4K to reduce the background on the detectors. Polarimetry is achieved by means of large rotating half-wave plates and wire-grid polarizers in front of the arrays. The polarization modulator is the first component of the optical chain, reducing significantly the effect of instrumental polarization. In SWIPE we trade angular resolution for sensitivity. The diameter of the entrance pupil of the refractive telescope is 45 cm, while the field optics is optimized to collect tens of modes for each detector, thus boosting the absorbed power. This approach results in a FWHM resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The expected performance of the three channels is limited by photon noise, resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Neuroticism and Conscientiousness Moderate the Effect of Oral Medication Beliefs on Adherence of People with Mental Illness during the Pandemic

    Get PDF
    Background. After the declaration of the pandemic status in several countries, the continuity of face-to-face visits in psychiatric facilities has been delayed or even interrupted to reduce viral spread. Little is known about the personality factors associated with medication beliefs and adherence amongst individuals with mental illness during the COVID-19 pandemic. This brief report describes a preliminary naturalistic longitudinal study that explored whether the Big Five personality traits prospectively moderate the effects of medication beliefs on changes in adherence during the pandemic for a group of outpatients with psychosis or bipolar disorder. Methods. Thirteen outpatients undergoing routine face-to-face follow-up assessments during the pandemic were included (41 observations overall) and completed the Revised Italian Version of the Ten-Item Personality Inventory, the Beliefs about Medicines Questionnaire, the Morisky Medication Adherence Scale-8-item and the Beck Depression Inventory-II. Results. Participants had stronger concerns about their psychiatric medications rather than beliefs about their necessity, and adherence to medications was generally low. Participants who had more necessity beliefs than concerns had better adherence to medications. People scoring higher in Conscientiousness and Neuroticism traits and more concerned about the medication side effects had poorer adherence. Conclusions. These preliminary data suggest the importance of a careful assessment of the adherence to medications amongst people with psychosis/bipolar disorder during the pandemic. Interventions aimed to improve adherence might focus on patients' medication beliefs and their Conscientiousness and Neuroticism personality traits

    Phthalates and Bisphenol A: presence in blood serum and follicular fluid of italian women undergoing assisted reproduction techniques

    Get PDF
    Background: folliculogenesis is a strictly regulated process that may be affected by endocrine disrupting chemicals (EDCs) through sometimes not so clear molecular mechanisms. Methods: we conducted a multicentric observational study involving six fertility centers across Italy, prospectively recruiting 122 women attending a fertility treatment. Recruited women had age ≤42 years, and normal ovarian reserve. Blood and follicular fluid samples were taken for EDCs measurement using liquid chromatography tandem mass spectrometry and each woman completed an epidemiological questionnaire. Results: The main EDCs found were monobutyl phthalate (MBP) (median blood: 8.96 ng/mL, follicular fluid 6.43 ng/mL), monoethylhexyl phthalate (MEHP) (median blood: 9.16 ng/mL, follicular fluid 7.68 ng/mL) and bisphenol A (BPA) (median blood: 1.89 ng/mL, follicular fluid 1.86 ng/mL). We found that serum MBP concentration was significantly associated with the considered area (p < 0.001, adj. mean: 7.61 ng/mL, 14.40 ng/mL, 13.56 ng/mL; Area 1: Milan–Turin, Area 2: Rome–Naples; Area 3: Catania–Bari, respectively) but negatively with home plastic food packaging (p = 0.004). Follicular MBP was associated with irregular cycles (p = 0.019). No association was detected between EDCs and eating habits and other clinical and epidemiological features. Conclusions: This study represents the first Italian biomonitoring of plastic EDCs in follicular fluid, laying the basis for future prospective evaluation on oocyte quality before assisted reproduction techniques (ART

    Science case study and scientific simulations for the enhanced X-ray Timing Polarimetry mission, eXTP

    Get PDF
    The X-ray astronomy mission eXTP (enhanced X-ray Timing Polarimetry) is designed to study matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state (EoS) of matter at supranuclear density, the physics in extremely strong magnetic fields, the study of accretion in strong-field gravity (SFG) regime. Primary targets include isolated and binary neutron stars, strong magneticfield systems like magnetars, and stellar-mass and supermassive black holes. In this paper we report about key observations and simulations with eXTP on the primary objectives involving accretion under SFG regimes and determination of NS-Eo

    Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment

    Get PDF
    Nowadays, due to the adverse health effects associated with exposure to asbestos, its inertization is one of the most important issues of waste risk management. Based on the research line of mechano-chemical and thermal treatment of asbestos containing materials, the aim of this study was to examine the effects of dry grinding on the structure, temperature stability and fibre size of chrysotile from Balangero (Italy), as well as standard UICC (Union for International Cancer Control) amosite and standard UICC (Union for International Cancer Control) crocidolite. Dry grinding was accomplished in an eccentric vibration mill by varying the grinding time (30 s, 5 and 10 min). Results show a decrease in crystallinity, the formation of lattice defects and size reduction with progressive formation of agglomerates in the samples after the mechanical treatment. Transmission electron microscopy (TEM) results show that the final product obtained after 10 min of grinding is composed of non-crystalline particles and a minor residue of crystalline fibres that are not regulated because they do not meet the size criteria for a regulated fibre. Grinding results in a decrease of temperature and enthalpy of dehydroxylation (ΔHdehy) of chrysotile, amosite and crocidolite. This permits us to completely destroy these fibres in thermal inertization processes using a lower net thermal energy than that used for the raw samples

    Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers

    No full text
    Iron and its role as soul of life on Earth is addressed in this review as iron is one of the most abundant elements of our universe, forms the core of our planet and that of telluric (i.e., Earth-like) planets, is a major element of the Earth's crust and is hosted in an endless number of mineral phases, both crystalline and amorphous. To study iron at an atomic level inside the bulk of mineral phases or at its surface, where it is more reactive, both spectroscopy and diffraction experimental methods can be used, taking advantage of nearly the whole spectrum of electromagnetic waves. These methods can be successfully combined to microscopy to simultaneously provide chemical (e.g. iron mapping) and morphological information on mineral particles, and shed light on the interaction of mineral surfaces with organic matter. This review describes the crystal chemistry of iron-bearing minerals of importance for the environment and human health, with special attention to iron in toxic minerals, and the experimental methods used for their study. Special attention is devoted to the Fenton-like chain reaction involving Fe 2+ in the formation of highly reactive hydroxyl radicals. The final part of this review deals with release and adsorption of iron in biological fluids, coordinative and oxidative state of iron and in vitro reactivity. To disclose the very mechanisms of carcinogenesis induced by iron-bearing toxic mineral particles, crystal chemistry and surface chemistry are fundamental for a multidisciplinary approach which should involve geo-bio-scientists, toxicologists and medical doctors

    Mineral Fibres and Asbestos Bodies in Human Lung Tissue: A Case Study

    No full text
    One of the open questions regarding the asbestos problem is the fate of the mineral fibres in the body once inhaled and deposited in the deep respiratory system. In this context, the present paper reports the results of an electron microscopy study of both mineral fibres and asbestos bodies found in the lung tissue of a patient who died of malignant mesothelioma due to past occupational exposure. In concert with previous in vivo animal studies, our data provide evidence that amphibole asbestos fibres are durable in the lungs, whereas chrysotile fibres are transformed into a silica-rich product, which can be easily cleared. Amphibole fibres recovered from samples of tissue of the deceased display a high degree of crystallinity but also show a very thin amorphous layer on their surface; 31% of the fibres are coated with asbestos bodies consisting of a mixture of ferroproteins (mainly ferritin). Here, we propose an improved model for the coating process. Formation of a coating on the fibres is a defence mechanism against fibres that are longer than 10 µm and thinner than 0.5 µm, which macrophages cannot engulf. The mature asbestos bodies show signs of degradation, and the iron stored in ferritin may be released and potentially increase oxidative stress in the lung tissue

    The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study

    No full text
    Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite> crocidolite≈chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe3+. Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves

    Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM)

    No full text
    In Italy, reclamation of asbestos-containing materials (ACM) such as friable asbestos and cement-asbestos is accomplished by their removal, packaging and dumping in controlled landfills. An alternative way to landfill disposal is the thermal transformation of ACM and recycling of the transformation product as secondary raw material. The aim of this work is to integrate preliminary X-ray diffraction and microscopic investigations on the secondary raw material described earlier with a detailed study on the product of transformation at 1200 degrees C of friable chrysotile-asbestos and cement-asbestos, using (micro) Raman, (micro) FTIR, (57)Fe Mossbauer and XANES at the Fe K-edge. Micro-Raman spectra reveal that the absorption bands generated by chrysotile are no longer present in the high-temperature products, and this is further confirmed by micro-FTIR results. In the core of the former fibres of loose chrysotile asbestos, the newly formed phases are olivine and enstatite, whereas the product of transformation of cement-asbestos is composed of olivine together with several other phases such as hematite and (Ca, Mg, Al)-silicates. The Mossbauer absorption spectra of raw chrysotile reveal that iron is contained in a paramagnetic phase (40 %) as well as in accessory magnetite (60 %). The paramagnetic contribution, attributed to chrysotile, is represented by Fe(2+) (10 % of Fe(tot)) and Fe(3+) (30 % of Fe(tot)), both octahedrally coordinated. The spectrum of thermally treated chrysotile clearly shows that the magnetic phases are now oxidized magnetite/maghemite and hematite, and the paramagnetic contribution is quite unaltered, though likely due to the newly formed olivine. The spectrum of untreated cement-asbestos has no evidence of accessory magnetic phases and is made of Fe(2+) (15% of Fe(tot)) and Fe(3+) (85% of Fe(tot)), both octahedrally coordinated. In the thermally treated sample all iron is oxidized, but a phase transition occurred, because Fe(3+) is tetrahedrally coordinated. Also XANES spectra show that in all samples the dominant iron oxidation state is 3+. XANES data on standard chrysotile are compatible with the possible presence of magnetite. In the high-temperature product of cement-asbestos, the high intensity of the pre-edge peak is comparable with that of the reference compound Fe-silicalite, with ferric iron hosted in the framework. This result indicates that in this product ferric iron is likely hosted in a crystalline phase in four-fold coordination, in agreement with Mossbauer spectroscopy results. Such crystalline phase could be Fe-bearing akermanite-gehlenite
    corecore