27,932 research outputs found

    Recent star formation in nearby 3CR radio-galaxies from UV HST observations

    Full text link
    We analyzed HST images of 31 nearby (z <~ 0.1) 3CR radio-galaxies. We compared their UV and optical images to detect evidence of recent star formation. Six objects were excluded because they are highly nucleated or had very low UV count rates. After subtracting the emission from their nuclei and/or jets, 12 of the remaining 25 objects, presenting an UV/optical colors NUV - r < 5.4, are potential star-forming candidates. Considering the contamination from other AGN-related processes (UV emission lines, nebular continuum, and scattered nuclear light), there are 6 remaining star-forming "blue" galaxies. We then divide the radio galaxies, on the basis of the radio morphology, radio power, and diagnostic optical line ratios, into low and high excitation galaxies, LEG and HEG. While there is no correlation between the FR type (or radio power) and color, the FR type is clearly related to the spectroscopic type. In fact, all HEG (with one possible exception) show morphological evidence of recent star formation in UV compact knots, extended over 5-20 kpc. Conversely, there is only 1 "blue" LEG out of 19, including in this class also FR I galaxies. The picture that emerges, considering color, UV, optical, and dust morphology, is that only in HEG recent star formation is associated with these relatively powerful AGN, which are most likely triggered by a recent, major, wet merger. Conversely, in LEG galaxies the fraction of actively star-forming objects is not enhanced with respect to quiescent galaxies. The AGN activity in these sources can be probably self-sustained by their hot interstellar medium.Comment: Accepted for publication in A&

    Satellite measurement of the Hannay angle

    Full text link
    The concept of a measurement of the yet unevaluated Hannay angle, by means of an Earth-bound satellite, adiabatically driven by the Moon, is shown herein. Numerical estimates are given for the angles, the orbital displacements, the shortening of the orbital periods, for different altitudes. It is concluded that the Hannay effect is measurable in high Earth orbits, by means of atomic clocks, accurate Time & Frequency transfer system and precise positioning.Comment: Lette

    Morse index and linear stability of the Lagrangian circular orbit in a three-body-type problem via index theory

    Full text link
    It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β\beta and on the eccentricity ee of the orbit. We consider only the circular case (e=0e = 0) but under the action of a broader family of singular potentials: α\alpha-homogeneous potentials, for α(0,2)\alpha \in (0,2), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α\alpha and the mass parameter β\beta, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y.~Long, X.~Hu and S.~Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.Comment: 48 pages, 13 figures, minor revision

    A source-free integration method for black hole perturbations and self-force computation: Radial fall

    Full text link
    Perturbations of Schwarzschild-Droste black holes in the Regge-Wheeler gauge benefit from the availability of a wave equation and from the gauge invariance of the wave function, but lack smoothness. Nevertheless, the even perturbations belong to the C\textsuperscript{0} continuity class, if the wave function and its derivatives satisfy specific conditions on the discontinuities, known as jump conditions, at the particle position. These conditions suggest a new way for dealing with finite element integration in time domain. The forward time value in the upper node of the (t,r(t, r^*) grid cell is obtained by the linear combination of the three preceding node values and of analytic expressions based on the jump conditions. The numerical integration does not deal directly with the source term, the associated singularities and the potential. This amounts to an indirect integration of the wave equation. The known wave forms at infinity are recovered and the wave function at the particle position is shown. In this series of papers, the radial trajectory is dealt with first, being this method of integration applicable to generic orbits of EMRI (Extreme Mass Ratio Inspiral).Comment: This arXiv version differs from the one to be published by Phys. Rev. D for the use of British English and other minor editorial difference

    Discovery of a FR0 radio galaxy emitting at γ\gamma-ray energies

    Get PDF
    We present supporting evidence for the first association of a Fermi source, 3FGLJ1330.0-3818, with the FR0 radio galaxy Tol1326-379. FR0s represent the majority of the local radio loud AGN population but their nature is still unclear. They share the same properties of FRIs from the point of view of the nuclear and host properties, but they show a large deficit of extended radio emission. Here we show that FR0s can emit photons at very high energies. Tol1326-379 has a GeV luminosity of L>1 GeV2×1042L_{>1~{\rm GeV}} \sim 2\times10^{42} erg s1^{-1}, typical of FRIs, but with a steeper γ\gamma-ray spectrum (Γ=2.78±0.14\Gamma=2.78\pm 0.14). This could be related to the intrinsic jet properties but also to a different viewing angle.Comment: 7 pages, 5 figures , accepted for publication on MNRA

    Sufficient conditions for the existence of Zeno behavior in a class of nonlinear hybrid systems via constant approximations

    Get PDF
    The existence of Zeno behavior in hybrid systems is related to a certain type of equilibria, termed Zeno equilibria, that are invariant under the discrete, but not the continuous, dynamics of a hybrid system. In analogy to the standard procedure of linearizing a vector field at an equilibrium point to determine its stability, in this paper we study the local behavior of a hybrid system near a Zeno equilibrium point by considering the value of the vector field on each domain at this point, i.e., we consider constant approximations of nonlinear hybrid systems. By means of these constant approximations, we are able to derive conditions that simultaneously imply both the existence of Zeno behavior and the local exponential stability of a Zeno equilibrium point. Moreover, since these conditions are in terms of the value of the vector field on each domain at a point, they are remarkably easy to verify
    corecore