58 research outputs found

    Innovative monitoring of atmospheric gaseous hydrogen fluoride

    Get PDF
    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n=10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation

    Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    Get PDF
    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 – 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the suitability of SDI for globe artichoke cultivation, reducing the water consumption, while maintaining (or even increasing) crop production and (ii) assess the crop water use efficiency respect to surface drip-irrigation. The field test is located in Venturina (Italy) and it covers a surface of 4 ha. The soil is characterized by sandy-loam texture, 1.72% of organic matter at 7.81 pH. Groundwater is the main source of supply for irrigation. By the chemical point of view, a monitoring campaign in spring 2016 showed a neutral pH of 7.2, electrical conductivity of 1363 μS/cm, 373 and 243 mg/l of total sulphate and carbonate, respectively, thus demonstrating the suitability of groundwater for SDI application. The SDI system was implemented at the beginning of September 2016. The sub-surface buried pipelines, were placed at 0.25 m depth, with emitters spaced 0.5 m. The distance between pipelines was 1.5 m, according to globe artichoke layout (1.5 m between rows, 1 m in-row spacing). Surface-buried tubes were placed in an area about 0.75 ha wide for the comparison with SDI. Artichoke var. Terom were transplanted after the SDI operation test. In the next 3 years, both crop productivity and water use will be assessed. Results will be presented and discussed with the whole farmer’s community. Acknowledgement This paper is presented within the framework of the project LIFE REWAT, which has received funding from the LIFE Programme of the European Union Grant Agreement LIFE14 ENV/IT/001290

    development of an innovative gas chromatography mass spectrometry method for assessment of formaldehyde in the workplace atmosphere

    Get PDF
    World consumption of formaldehyde (FA) is forecast to grow at an average annual rate of about 4% from 2015 to 2020 with world production to exceed 52 million tons in 2017. From the first day of January 2016, the Commission Regulation No. 91/2015 established the FA classification through an indication from European Chemical Agency as category 2 mutagenic and category 1B carcinogen. A novel method for the determination of gaseous FA in air is presented herewith. The sampling was carried out using a miniaturized cartridge by means of a medium-flow pumping system (1.0 L min-1, 5–60 min) and absorption of FA vapors on 2,4-dinitrophenylhydrazine. Cartridge desorption removing the excess derivatizing agent based upon solid-phase extraction was performed by an innovative xyz robotic system on-line with fast gas chromatography (GC)—mass spectrometry (MS). Through the generation of standard atmospheres of known concentration of FA, we evaluated the precision (relative standard deviation for n = 10, 8.8%), lower lim..

    Assessment of occupational exposure to gaseous peracetic acid

    Get PDF
    Objectives In order to assess short-term exposure to peracetic acid (PAA) in disinfection processes, the Authors compared 4 industrial hygiene monitoring methods to evaluate their proficiency in measuring airborne PAA concentrations. Material and Methods An active sampling by basic silica gel impregnated with methyl p-tolyl sulfoxide (MTSO), a passive solid phase micro-extraction technique using methyl p-tolyl sulfide (MTS) as on-fiber derivatization reagent, an electrochemical direct-reading PAA monitor, and a novel visual test strip PAA detector doped with 2,2’-azino-bis (3-ethylbenzothiazoline)-6-sulfonate were evaluated and tested over the range of 0.06–16 mg/m3, using dynamically generated PAA air concentrations. Results The linear regression analysis of linearity and accuracy showed that the 4 methods were suitable for PAA monitoring. Peracetic acid monitoring in several use applications showed that the PAA concentration (1.8 mg/m3) was immediately dangerous to life or health as proposed by the National Institute of Occupational Safety and Health, and was frequently exceeded in wastewater treatment (up to 7.33 mg/m3), and sometimes during food and beverage processes and hospital high-level disinfection operations (up to 6.8 mg/m3). Conclusions The methods were suitable for the quick assessment of acute exposure in PAA environmental monitoring and can assist in improving safety and air quality in the workplace where this disinfectant is used. These monitoring methods allowed the evaluation of changes to work out practices to reduce PAA vapor concentrations during the operations when workers are potentially overexposed to this strong antioxidant agent. Int J Occup Med Environ Health 2018;31(4):527–53

    Novi pristup procjeni profesionalne izloženosti antineoplasticima u bolničkom okruženju

    Get PDF
    Cytotoxic antineoplastic drugs (ADs) pose occupational risk and therefore require safe handling practices. We created, optimised, and validated an innovative monitoring protocol for simultaneously assessing 21 ADs in the healthcare environment, and also proposed surface exposure levels (SELs) to facilitate the interpretation of monitoring results, as there are currently no occupational exposure limits for ADs. The environmental AD monitoring data were collected in nine Italian hospitals between 2008 and 2017 and include 74,565 measurements in 4,814 wipe samples. Excellent overall recovery and sensitivity of the analytical methods along with innovative desorption automation make this protocol useful for routine monitoring. AD contamination was found in 3,081 measurements, confirming potential exposure in healthcare workers. Samples taken at the beginning and the end of work shifts, allowed to calculate 75th and 90th percentile values for each ADs both in preparation and administration units and we created a traffic-light colour-coding system to facilitate interpretation of the findings. The introduction of SELs will provide a solid basis for improving occupational safety and focusing on contamination control.Zbog profesionalnih rizika koje donose, s citotoksičnim antineoplasticima potrebno je sigurno rukovati. U ovom članku predstavljamo validirani inovativan protokol kojim se istodobno mogu pratiti razine dvadeset jednog antineoplastika u zdravstvenim ustanovama te predlažemo razine površinske izloženosti (engl. surface exposure levels, krat. SELs) koje bi trebale olakšati tumačenje dobivenih rezultata praćenja, budući da trenutačno nisu propisane granične vrijednosti profesionalne izloženosti antineoplasticima. Rezultate praćenja onečišćenja antineoplasticima prikupili smo od devet talijanskih bolnica od 2008. do 2017., a obuhvaćaju 74.565 mjerenja 4.814 uzoraka prikupljenih brisanjem površina namjenskim maramicama (brisom). Ovakav je protokol upravo zbog izvrsne iskorištenosti i osjetljivosti analitičkih metoda te inovativne automatizacije desorpcije pogodan za rutinsko praćenje izloženosti u bolničkom okruženju. Onečišćenje antineoplasticima utvrđeno je u 3.081 mjerenju, što potvrđuje rizik od izloženosti u zdravstvenih radnika. Uzimanjem uzoraka na početku i kraju radne smjene omogućen je izračun vrijednosti unutar 75. i 90. percentila za svaki antineoplastik za jedinice u kojima se oni pripremaju i primjenjuju. Na temelju tih izračuna osmislili smo semaforski sustav boja koji olakšava tumačenje rezultata, a predložene razine površinske izloženosti poslužit će kao dobar temelj za poboljšanje sigurnosti na radnome mjestu i smanjenje onečišćenja

    Low-dose benzene exposure monitoring of oil refinery workers: inhalation and biomarkers

    Get PDF
    Airborne benzene in workplaces has progressively decreased due to preventive actions and the redesigning of facility processes. Professionals who assess occupational exposure should select techniques to detect benzene levels comparable to ambient air exposure. Thus, sensitive biomarkers are needed to discriminate the effects of confounding factors, such as smoking or sorbic acid (SA). In order to identify sensitive biomarkers and to study their correlation with confounding factors, 23 oil refinery workers were enrolled in the study; their airborne benzene exposures and biomarkers were monitored. Urinary benzene (U-B), t,t-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA) were quantified. Urinary cotinine (U-C) and t,t-sorbic acid (t,t-SA) were evaluated to flag smoking and SA intake, respectively. The benzene measured in personal inhalation sampling ranged from 0.6 to 83.5 (median 1.7) µg/m3. The concentration range of the biomarkers, U-B, t,t-MA, and SPMA, were 18–4893 ng/m3, <10–79.4 µg/g creatinine, and <0.5–3.96 µg/g creatinine, respectively. Pearson tests were carried out; the best correlations were between airborne benzene and U-B (µg/L r = 0.820, p < 0.001) and between benzene and SPMA (g/L r = 0.812, p < 0.001), followed by benzene and t,t-MA (mg/L r = 0.465, p = 0.039). From our study, U-B and SPMA result to be the most reliable biomarkers to assess the internal number of low doses of benzene exposure, thanks to their specificity and sensitivity

    Solid phase microextraction techniques used for gas chromatography: A review

    Get PDF
    In the last decade, the development and adoption of greener and sustainable microextraction techniques have been proved to be an effective alternative to classical sample preparation procedures. In this review, 10 commercially available solid-phase microextraction systems are presented, with special attention to the appraisal of their analytical, bioanalytical, and environmental engineering. This review provides an overview of the challenges and achievements in the application of fully automated miniaturized sample preparation methods in analytical laboratories. Both theoretical and practical aspects of these environment-friendly preparation approaches are discussed. The application of chemometrics in method development is also discussed. We are convinced that green analytical chemistry will be really useful in the years ahead. The application of cheap, fast, automated, "clever", and environmentally safe procedures to environmental, clinical, and food analysis will improve significantly the quality of the analytical data

    liquid phase microextraction techniques combined with chromatography analysis a review

    Get PDF
    Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid–liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed

    Drivers of growth and establishment of the invasive plant Rumex acetosella within Andean fallow systems

    Get PDF
    Intensification of crop rotations and associated agricultural practices are reducing the capacity of traditional fallows to restore soil fertility and provide forage in Andean cropping systems. While the implementation of improved fallows offers great promise to enhance forage provision and maintain soil productivity, effects of these practices on the establishment of problematic weeds, including non-native plant species, remain poorly understood. To address this knowledge gap, we studied: i) how biotic and abiotic environmental factors influence the establishment and productivity of weeds in traditional fallows; and ii) to what extent improved fallows can help control weedy vegetation in smallholder rotations of the high Andes. Specifically, in this research, we focused on the invasive plant species Rumex acetosella L., which is a common concern of farmers throughout the central Peruvian Andes. We leveraged a multi-site, participatory research trial established in 2017 across eight communities in the region to understand the main drivers of R. acetosella presence and productivity. We used a total of 82 sites, each with paired treatments of traditional fallow (control with natural revegetation) and improved fallow (seeded with Vicia sativa L. and Avena sativa L.). Prior to treatment establishment we measured soil texture, pH, soil organic matter content as well as exchangeable macro-nutrients. Vegetation data was recorded in each treatment and divided into four categories: 1) A. sativa, 2) V. sativa, 3) R. acetosella, and 4) other weeds, and weighed to determine the relative biomass contribution of each. From these data, we calculated an index for R. acetosella pressure, weed pressure, and forage productivity. Our findings indicate that improved fallows greatly suppress weedy vegetation relative to unmanaged controls, including the invasive R. acetosella. Multivariate analyses suggested that R. acetosella abundance was associated with the presence of other non-planted weeds and predictors of soil fertility. The mean R. acetosella index in improved fallows was significantly lower compared to traditional fallows. We found R. acetosella biomass to be greater at lower productivity sites, i.e., those at higher elevations with cooler climates and sites with less fertile soils. Our findings indicate that if the fallow portion of a rotation is kept productive via adequate soil fertility inputs, the biomass of weeds, including the alien R. acetosella, is dramatically reduced
    corecore