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ABSTRACT 
This paper reports a contribution of three on-sample derivatization sampling techniques 
for acetylacetone, 4-tert-butyl catechol and its oxidated derivatives 4-tert-butyl-1,2-
benzoquinone determination in unsaturated polyester resins. The use of O-(2,3,4,5,6, 
pentafluorobenzyl)-hydroxylamine, trimethyloxonium tetrafluoroborate and O-methyl-
hydroxylamine is combined with automated head space/solid phase microextraction and 
gas chromatography/mass spectrometry analysis. For an innovative powerful meaning in 
high-throughput routine, the generality of the structurally informative mass spectrometry 
fragmentation patterns together with the chromatographic separation are also 
investigated. The detection limits for these polymerization inhibitors and promoters are less 
than 27 pg for one mg of unsaturated polyester resin. In this study a new autosampler 
platform is proposed by using the Multi Fiber Exchange device in a xyz robotic system. We 
promote these methods as the analytical reference in the polyester resin field. The 
introduction of dedicated, automated, and robotic systems allowed a friendly use of MS 
apparatus for high-throughput screening and it reduces the costs of monitoring campaigns. 
Keywords: unsaturated polyester resins, 4-tert-butyl catechol, acetylacetone, solid phase 
microextraction, gas chromatography 
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INTRODUCTION 

Global unsaturated polyester resins (UPR) market is expected to witness growth owing 
to commercial use in fiberglass reinforced plastics which have extensive applications in the 
construction industry. Therefore, worldwide production is expected to increase by more than 
30% by 2020 (7,000 kilo tonnes) [1]. The invention of UPR is ascribed to Carleton Ellis. The first 
patents with regard to polyester resins emerged in the 1930s. Commercial production started 
in 1941 already reinforced with glass fibers for radar domes, also referred to as radomes [2, 3]. 
High ambient storage temperatures or long storage times, result in preliminary self-
polymerization of these resins. A monetary loss due to the deterioration of the work ability of 
the resins occurs. So, inhibitors are used to increase the lifetime. 

The existing methods for UPR characterization are nuclear magnetic resonance 
spectroscopy, size exclusion chromatography, and gas chromatography (GC) [4-6]. The main 
drawbacks in these analytical procedures are the use of solvents and/or cleanup steps, which 
have been reported to extract and eliminate most of the interfering compounds from the UPR, 
thus impeding their identification and quantification. Moreover, these procedures result in a 
large number of manual operations, uncertainty of the determination, higher overall cost and 
possible analyte loss.  

In the last 10 years, miniaturization has attracted much attention in analytical chemistry 
and has driven solvent and sample savings, sample enrichment, rapid sample preparation, 
and easier automation. Sample preparation remains one of the more time-consuming and 
error-prone aspects of analytical chemistry. To overcome drawbacks of conventional 
extraction techniques, alternative miniaturized methods have been proposed both as solid 
phase microextraction, as Solid Phase MicroExtraction (SPME) [7-9], MicroExctraction by 
Packed Sorbent (MEPS) [10], Stir Bar Sorptive Extraction (Twister, SBSE) [11], Solid Phase 
Dynamic Extraction (Magic Needle, SPDE) [12], In-Tube Extraction (ITEX) [13] and liquid 
phase microextraction like Single-Drop MicroExtraction (SDME) [14], Hollow Fiber Liquid-
Phase Microextraction (HF-LPME) [15,16], Dispersive Liquid–Liquid Microextraction 
(DLLME) [17], Solvent Bar MicroExtraction (SBME) [18]. On-sample derivatizations applied 
in miniaturized extraction systems and their simultaneous GC and liquid chromatography 
analysis has been described for the determination of analytes in aqueous matrices [19, 20]. 
These methods employ a sample derivatization technique to convert such polar substances 
into hydrophobic compounds whose volatility is sufficiently high for a GC determination. 
Within analytical chemistry, the SPME analysis is considered one of major breakthroughs that 
shaped 20th-century analytical chemistry [21]. SPME integrates sampling, extraction, 
concentration and sample introduction into a single step and the extraction requires no 
polluting organic solvent.  

Accordingly, we developed three innovative methods for the determination of 
acetylacetone, 4-tert-butyl catechol (TBC) and its oxidated derivatives 4-tert-butyl-1,2-
benzoquinone (TBBC) in UPR, in which automated head space (HS)/SPME technique after 
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on-sample derivatization is coupled to GC/mass spectrometry (MS). The aim of this work is a 
high-throughput assay with a molecular discrimination perfomed by structurally informative 
MS fragmentation patterns. Finally, we proposed a new off-line platform, called SPME Multi 
Off-Line Sampler, coupled to MultiFiber Exchange (MFX) installed on a xyz autosampler.  

EXPERIMENTAL 

On-sample derivatization 

Dilution of UPR 

As indicated in a previous paper [22], 100 mg of UPR were dissolved in 10 mL of 
chloroform (CAS n. 67-66-3). The resulting solution was diluted 1/10 in dimethylsulfoxide 
(CAS n. 67-68-5). The third solution was made by 1/100 to 1/10 000 water dilutions. 

TBC by trimethyloxonium tetrafluoroborate   

2 mL of water diluted UPR were transferred into a 10 mL autosampler vial with a 
magnetic stirring bar and mixed with 40 μL of the internal standard (IS) TBC methyl-D6 
methanol solution (50 μg/mL). To convert the TBC (CAS n. 98-29-3, Cat. n. 19670, Aldrich) 
into its methylether, derivatization with trimethyloxonium tetrafluoroborate (TMO, CAS n. 
420-37-1, Cat. n. 281077, Aldrich) was performed at room temperature in two steps. While 
stirring, about 20 mg of Na2CO3 (CAS n. 497-19-8) were added and within 4 minutes 
approximately 30 mg of solid TMO were added in two aliquots. After 1 minute the solution 
was neutralized with about 15 mg of NaHCO3 (CAS n. 144-55-8). This procedure was repeated 
again. Finally, for HS by polyacrylate 85 μm Fast Fit Assemblies (FFA) SPME fiber (Cat. n. FFA 
57294-U, Supelco), NaCl (0.5 g) (CAS n. 7647-14-5) was added and the vials were processed by 
extraction. For TBC-dimethylether, the mass number of the target ion was m/z=179 and the 
confirming ion was m/z=194. 

Acetylacetone by O-(2,3,4,5,6, pentafluorobenzyl)-hydroxylamine 

2 mL of water diluted UPR were transferred into a 10 mL autosampler vial and mixed 
with 10 μL cyclohexanone (CAS n. 108-94-1, Cat. n. 398241 Sigma-Aldrich) IS solution 
(240 μg/mL) plus 100 μL of 40 mg/mL O-(2,3,4,5,6, pentafluorobenzyl)-hydroxylamine 
hydrochloride (PFBHA, CAS n. 57981-02-9, Cat. n. 76735, Sigma-Aldrich) aqueous solution. 
The condition used for full reaction to convert the acetylacetone (CAS n. 123-54-6, Cat. n. 
005581, Sigma-Aldrich) into its PFB-bis-oximes was 20 hours at room temperature. The SPME-
HS sampling was performed by 30 μm polydimethylsiloxane (PDMS) FFA SPME fiber (Cat. n. 
FFA 57289-U, Supelco). The target and the confirming ions were m/z=181 and m/z=236, 293, 
respectively. 

TBBC by methoxylamine  

2 mL of water diluted UPR were transferred into a 10 mL autosampler vial and mixed 
with 10 μL TBBC methyl-D9 IS solution 240 μg/mL plus 300 μL of 80 mg/mL O-
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methylhydroxylamine hydrochloride (MHA, CAS n. 593-56-6, Alfa Aesar Cat. n. A19188) 
aqueous solution. The condition used for full reaction to convert the TBBC (CAS n. 1129-21-1) 
into its methyl-bis-oxime was 20 hours at room temperature. The SPME-HS sampling was 
performed by 30 μm PDMS FFA SPME fiber. The confirming ion was m/z=222. 

On-line SPME conditions and xyz robotic apparatus 

Automation of the GC procedure was achieved using a new Flex autosampler (EST 
Analytical, Fairfield, USA). For HS-SPME absorption, a pulsed agitation (on for 2 s at 500 rpm 
and off for 4 s, 50 °C) was carried out for incubation, before automatically introducing the fiber 
into the vial in the same conditions. After the absorption, the SPME fiber was introduced into 
the GC injector port by xyz autosampler. 

Off-line SPME sampling and xyz robotic apparatus 

The SPME Multi Off-Line Sampler (Chromline, Prato, Italy) is designed to be used with 
FFA SPME fibers. The holder works as a support to expose the SPME fiber into the vial, placed 
on plate of the 32-position magnetic stirrer (Chromline). After the exposure FFA SPME fibers 
are automatically removed by the Multi Off-Line Sampler and placed into a 45-position tray, 
allowing the exchange of SPME fibers on the Flex autosampler. Desorption of sampled fibers 
was perfomed into the GC instrument equipped with Merlin Microseal System (Cat. n. 24817-
U, Sigma-Aldrich). A connection with the Laboratory Information Management System (Bika 
Lab System) allowed a user-programmable suite. 

GC/MS 

Analysis were performed with a Varian 3900 GC equipped with electronic flow control 
and a 320-MS (Varian Inc.) detector. A MEGA-5-MS fused silica capillary column (internal 
diameter 0.25 mm, length 30 m and film thickness 0.25 μm, Cat. No. MS-5-025-025-30, MEGA, 
Legnano, Italy) was used. TBC and TBBC analysis were performed with column temperature 
set to 50 °C for 1 min and then increased at 10 °C/min to 240 °C (total run time 20.00 min). In 
acetylacetone (CAS n. 123-54-6) determination, column oven was set to 40 °C for 2 min and 
then increased at 25 °C/min to 210 °C, 3 °C/min to 230 °C and finally 30 °C/min to 300 °C for 
2.2 min (total run time 20.00 min). Desorption of the analytes was performed introducing the 
SPME fiber into the 1079 Varian GC injector port (10:1 split mode) for 4 min. The MS was 
operated in single quadrupole and electron ionization (EI) source with electron energy of 70 
eV. Helium (99.999%) at a flow rate of 1.2 mL/min was used as carrier gas.  

SYNTHESIS  

TBC-D6 

Methylation of the catecholic hydroxyls with methyl iodide-D3 (CAS n. 865-50-9) 
afforded TBC-D6 in good yield (Figure 1). Methyl iodide-D3 (5.00 g, 34.5 mmol) was added to 
a suspension of 4-tert-butyl catechol (2.39 g, 14.4 mmol) and K2CO3 (5.97 g, 43.2 mmol) (CAS 
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n. 584-08-7). The mixture was heated at 60 °C for 16 hours, then poured on 200 mL of water, 
extracted three times with Et2O (CAS n. 60-29-7), the combined organic layers were dried over 
anhydrous Na2SO4 (CAS n. 7757-82-6), filtered and evaporated. The resulting residue was 
purified by flash column chromatography on silica gel [25% CH2Cl2  (CAS n. 75-09-2) in 
petroleum ether (CAS n. 8032-32-4)] to give pure TBC-D6 (2.44 g, 85% yield). 1H-NMR (400 
MHz, CDCl3) δ 6.92-6.88 (m, 2H), 6.77 (d, 1H), 1.30 (s, 9H); 13C-NMR (100 MHz, CDCl3) δ 
148.2, 146.6, 143.7, 116.9, 110.6, 109.0, 55.61, 55.60, 34.2, 31.3; ESI-MS: m/z 201.31 [M+H]+. 

TBC-D9 

In a flame dried Schlenk flask under N2 atmosphere, tert-butanol-D10 (CAS n. 53001-22-
2) (300 mg, 3.56 mmol) was added to a solution of catechol (CAS n. 120-80-9) (392 mg, 3.56 
mmol) in trifluoroacetic acid-D (CAS n. 599-00-8) (4.5 mL) and D2SO4 (CAS n. 13813-19-9) (200 
uL). The obtained yellow solution was stirred at 40 °C overnight. The reaction was diluted 
with CH2Cl2, washed twice with water and then twice with a saturated solution of NaHCO3 
and dried over anhydrous Na2SO4. After evaporation of the solvent, the residue was purified 
by flash column chromatography on silica gel [20% ethyl acetate (CAS n. 141-78-6) in 
petroleum ether] obtaining pure TBC-D9 (90 mg, 15% yield) as an oil. 1H-NMR (200 MHz, 
CDCl3) δ 6.77-6.83 (m, 2H), 6.58 (s, 1H); 13C-NMR (50 MHz, CDCl3) δ 144.9, 142.7, 140.6, 118.0, 
115.9, 113.4, 34.0; ESI-MS: m/z 198.16 [M+Na]+. 

TBBC-D9 

To obtain TBBC-D9, TBC-D9 was first synthesized following the procedure reported for 
the preparation of the protonated analogue [23]. Briefly, catechol was alkylated at position 4 
with tert-butanol-D10 under acidic conditions of trifluoroacetic acid-D and D2SO4. The 
deuterated environment proved to be essential for the obtainment of the fully deuterated 
compound, as otherwise the tert-butyl cation D9 can exchange with the protic medium leading 
to the formation of partially deuterated derivatives. Oxidation of the catechol by NaIO4 (CAS 
n. 7790-28-5) under phase transfer conditions provided the correspondent ortho-quinone 
TBBC-D9. In detail, to a solution of TBC-D9 (80 mg, 0.46 mmol) in CH2Cl2 (45 mL) shielded 
from light, a solution of NaIO4 (103 mg, 0.48 mmol) in H2O (5 mL) was added. To this mixture 
tetrabutylammonium bromide (CAS n. 64-20-0) (148 mg, 0.46 mmol) was added. The reaction 
was vigorously stirred in the dark for 1 hour. After diluting the reaction with CH2Cl2, the 
organic phase was collected and washed twice with H2O, then dried over anhydrous Na2SO4. 
After evaporation of the solvent, the residue was purified by flash column chromatography 

 
Figure 1. Methylation of TBC with methyl iodide-D3 
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on silica gel (25% ethyl acetate in petroleum ether) obtaining pure TBBC-D9 (16 mg, 20% yield) 
as a green solid. M.p. = 61-62 °C; 1H-NMR (200 MHz, CDCl3) δ 7.19 (dd, 1H), 6.38 (d, 1H), 6.27 
(d, 1H); 13C-NMR (50 MHz, CDCl3) δ 190.44, 162.25, 140.20, 129.53, 123.94, 35.77; ESI-MS: m/z 
196.14 [M+Na]+. 

RESULTS AND DISCUSSION 

Sampling of UPR by HS/SPME sampling and following GC/MS analysis has aroused 
interest in the authors of this work and has been investigated as a possible alternative to 
conventional methods. The aim of this paper is to provide a simple, fast, sensitive, and organic-
solvent free innovative procedure for analysis of polymerization inhibitors and promoter in 
UPR. So, to achieve successful method, two fundamental requisites were satisfied by the 
Authors. 

Carbonyl and hydroxyl functional groups on-sample derivatizations 

On-sample derivatization of carbonyl group to hydrazones and oximes is frequently 
used. The procedure involves derivatization of the analyte with 2,4-dinitrophenylhydrazine 
(CAS n. 119-26-6) [24], 2,4,6-trichlorophenylhydrazine [25], pentafluorophenylhydrazine (CAS 
n. 828-73-9) [26], PFBHA and MHA. These last two reacts in weakly acidic media (pH 4–6) 
with CO- groups to produce the corresponding oximes.  

The GC/EI positive ion MS base peak for all PFB-derivatives is m/z 181, the 
pentafluorotropylium cation [27] (Figure 2). 

 
Figure 2. GC chromatogram and EI-MS spectrum of the three stereoisomers of acetylacetone-bis-PFB-
oxime 
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Differently, a characteristic base peak was not observed for methyloxime derivatives of 
model carbonyl compounds [28]. Methyloxime derivatives produce several abundant 
fragment ions with low molecular weight that result from simple cleavage or rearrangement 
followed by fragmentation [29]. We releaved that the o-quinones readily react with MHA to 
give the corresponding bis-oximes, and the reaction can be pushed to completion if an excess 
of hydroxylamine is used [30]. The presence of different peaks in the mass spectrum of TBBC-
D9 after the derivatization with MHA can be explained taking into account the redox equilibria 
which quinones and related molecules undergo by simple monoelectronic transfer [31]; indeed 
the mass peaks that were observed correspond to the TBBC-D9 dioxime, TBBC-D9 semi-
quinonedihydroxylamine and TBBC-D9 quinonedihydroxylamine which coexist in 
equilibrium (Figure 3). 

Trialkyloxonium ions (Meerwein salts), R3O+, with various counterions such as SbF6−, 
BF4−, SbCl6−, and PF6−are excellent alkylating agents for nucleophiles containing 
heteroatoms such as N, O, or S [32]. With TMO a methyl group of the oxonium ion reacts with 
the anion of the a –OH functional group to form the methyl ether. The MS spectrum of TBC-
bis-methylether is indicated in Figure 4. 

 
Figure 3. Redox equilibria in TBBC-D9 dioxime 

 
Figure 4. GC chromatogram and EI-MS spectrum of the TBC-bis-methylether 
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Verify the suitability to HS-SPME technique  

The first objective was to develop the derivatization conditions onto HS-SPME 
technologies to obtain compounds which are stable under a variety of conditions and easily 
amenable of sampling and analysis. The PA and PDMS absorptive liquid coatings were chosen 
for the SPME sampling of a very complex matrix such as UPR because of the lack of 
competition between the analytes. The HS-SPME techniques were described in a previous 
work by examining a three-phase system in which a liquid polymeric coating, a HS and an 
aqueous solution were involved [33]. The mass (n) of analytes absorbed by a coating after the 
equilibrium has been reached is related to the overall equilibrium of analytes in a three-phase 
system 

n = (C0V1V2K1K2)/(K1K2V1 + K2V3 + V2) 

where K1 is the SPME coating/HS partition coefficient, K2 is the HS/aqueous matrix 
partition coefficient, C0 is the initial concentration of the analyte in the aqueous solution, and 
V1, V2 and V3 are the volumes of the coating, the aqueous solution, and the HS, respectively. 
Since K values of the analytes (where K = K1 × K2) are often very close to the octanol–water 
partition coefficient (Kow), and K2 = KH/RT, where KH is Henry’s constant (C0, concentration 
gas phase/C0, concentration liquid phase). It derives that the equilibrium is controlled by Kow 
and KH values. Therefore, the constant of distribution estimated from physicochemical tables 
or by using the structural unit contribution method can anticipate trends in SPME analysis. 
The KH of the TBC-dimethylether, acetylacetone-PFB-oximes and TBBC-methyl-bis-oxime 
derivatives were 1.3, 71 52 and atm cm3/mol, which were in agreement with that reported by 
Pacenti et al [34], and indicated that HS-SPME is efficient for compounds with the KH higher 
than 0.17 atm cm3/mol (Table 1). 

Furthermore, we found better sensitivity using HS-SPME by an increase in the ion 
strength by adding bivalent salts instead monovalent salts. The solubility decrease of the 
methyloxime in the presence of inorganic salts is quantified by the Setschenow equation [35] 

log S0/S = log γ = Ks (salt,solute) C 

Table 1.  Physical properties and partition coefficients of the TBBC-methyl-bis-oxime a), acetylacetone-
PFB-bis-oximesb) and TBC-dimethyletherc) using SPARC software 
(http://www.archemcalc.com/index.html). 

SMILES strings CAS n. Teb 

°C 
Dwater 
cm2/s 

Dair 

cm2/s 
KH 

atm/(mol/m3) 
Pvap 

Pa 
CO\N=C1/C=C(C=C/C1=N\OC)C(C)(C)C a) unknown 373 5*10-6 4*10-2 5.21*10-5 1*10-2 
Fc2c(CO\N=C(\C)CC(/C)=N\OCc1c(F)c(F)c 
(F)c(F)c1F)c(F)c(F)c(F)c2F b) unknown 348 4*10-6 3*10-2 7.1*10-5 2*10-5 

COc1cc(ccc1OC)C(C)(C)C c) 41280-
64-2 269 6*10-6 5*10-2 1.3*10-6 1.9 

 

http://www.archemcalc.com/index.html
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where S0 is the solubility of the solute in water, S is the solubility in the presence of salt, γ is 
the activity coefficient of the solute, Ks is the Setschenow constant and C is the salt 
concentration. As some Authors showed [36, 37, 38], we noticed that the salt mixture 
ammonium sulfate (CAS n. 7783-20-2) and sodium dihydrogen phosphate (CAS n. 10049-21-
5) (ratio 4/1, 0.7 g) increase the salting out factor of 1.6 rather than the more commonly salt 
sodium chloride.  

In light of what indicated above the authors present the final results. As indicated in 
Table 2 the resulting calibration curves for TBC-dimethylether and acetylacetone-PFB-bis-
oximes were linear in the investigated range, showing a correlation coefficients >0.99. 
Accuracy was within 15% of the theoretical concentration, in line with the requirement of US 
Food and Drug Administration.  

The new autosampler platform proposed in this study integrate the MFX device. Several 
sample preparation steps immediately before sample injection have been automated, allowing 
just-in-time sample preparation. Following an example to show the advantages of the use of 
SPME FFA Multi Off-Line Sampler (Figure 5), we assume an extraction time of 40 minutes for 
TBC-bis-methylether and acetylacetone-PFB-bis-oximes equilibrium in a SPME three phase 

Table 2.  Calibration curve. Accuracy and precision of acetylacetone-PFB-bis-oximes and TBC-
dimethylether analytical methods. 

Calibration curve point 

acetylacetone-PFB-bis-oximes TBC-dimethylether 

Concentration (pg/mg) 

Nominal Measured 
(mean, n=5) Nominal Measured 

(mean, n=5) 
1 80 78 100 75 
2 160 159 200 202 
3 320 321 400 407 
4 640 640 800 817 
5 1280 1280 1600 1604 
6 2560 2559 3200 3193 

Response factor plot 
Least-squares linear regression 

plot parameters 
(m=slope b=intercept) 

m = 0.5361 
 

b = 0.6457 

m = 0.5868 
  
b = 8.621 

Coefficient of correlation 0.99 0.99 
Standard Error 0.556 8.199 

Method Detection Limits 
LOD (pg/mg) 1.9 27 
LOQ (pg/mg) 9.2 125 

Accuracy and Precision 
Within session accuracy (%) 6.7 7.0 

Within session repeatability (%) 0.9 3.7 
Inter session repeatability (%) 3.1 3.8 
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system and analysis time of 20 minutes. The results are excellent, with reduction of the total 
analysis time of 725 minutes (30 samples processed) respect to conventional SPME on-line 
analysis. 

CONCLUSIONS 

Our data suggest that automated SPME extraction coupled with GC/MS may be a viable 
alternative for quantitative TBC and acetylacetone analyses. New sample preparation 
techniques are being increasingly introduced because of the considerable need for information 
management, the automation of sample preparation, and the integration of data management 
into the analytical process. As a future perspective, we wish to expand the application of this 
methodology by carrying out the quantitative TBBC determination. 
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