209 research outputs found

    Retroviral Integrations in Gene Therapy Trials

    Get PDF
    γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis

    Bone Marrow Clonogenic Capability, Cytokine Production, and Thymic Output in Patients with Common Variable Immunodeficiency

    Get PDF
    AbstractIn patients with primary Ab deficiencies, hematological and immunological abnormalities are frequently observed. A regenerative failure of hemopoietic stem/progenitor cells has been hypothesized. We evaluated in the bone marrow (BM) of 11 patients with common variable immunodeficiency, the phenotype of BM progenitors and their in vitro growth by colony-forming cell (CFC) and long-term culture (LTC) assays. A significant decrease in erythroid and mixed CFC and, to a greater extent, in primitive LTC-CFC progenitors was observed in patients compared with healthy controls. The frequency of BM pre-B and pro-B cells correlated directly with the absolute number of CD19+ lymphocytes. BM cells cultured in vitro produced spontaneously lower amounts of IL-2 and elevated levels of TNF-α compared with controls, indicating a skewing toward a proapoptotic cytokine pattern. In addition, stromal cells generated after BM LTC secreted less IL-7 and displayed by immunohistochemistry an altered phenotype. These findings were associated with a significant decrease in naive Th cells coexpressing CD31 in the peripheral blood. These results indicate an impaired growth and differentiation capacity of progenitor cells in patients with common variable immunodeficiency

    Penalized inference of the hematopoietic cell differentiation network via high-dimensional clonal tracking

    Get PDF
    Abstract Background During their lifespan, stem- or progenitor cells have the ability to differentiate into more committed cell lineages. Understanding this process can be key in treating certain diseases. However, up until now only limited information about the cell differentiation process is known. Aim The goal of this paper is to present a statistical framework able to describe the cell differentiation process at the single clone level and to provide a corresponding inferential procedure for parameters estimation and structure reconstruction of the differentiation network. Approach We propose a multidimensional, continuous-time Markov model with density-dependent transition probabilities linear in sub-population sizes and rates. The inferential procedure is based on an iterative calculation of approximated solutions for two systems of ordinary differential equations, describing process moments evolution over time, that are analytically derived from the process' master equation. Network sparsity is induced by adding a SCAD-based penalization term in the generalized least squares objective function. Results The methods proposed here have been tested by means of a simulation study and then applied to a data set derived from a gene therapy clinical trial, in order to investigate hematopoiesis in humans, in-vivo. The hematopoietic structure estimated contradicts the classical dichotomy theory of cell differentiation and supports a novel myeloid-based model recently proposed in the literature

    Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell

    Get PDF
    The analysis of genomic distribution of retroviral vectors is a powerful tool to monitor ‘vector-on-host’ effects in gene therapy (GT) trials but also provides crucial information about ‘host-on-vector’ influences based on the target cell genetic and epigenetic state. We had the unique occasion to compare the insertional profile of the same therapeutic moloney murine leukemia virus (MLV) vector in the context of the adenosine deaminase-severe combined immunodeficiency (ADA-SCID) genetic background in two GT trials based on infusions of transduced mature lymphocytes (peripheral blood lymphocytes, PBL) or a single infusion of haematopoietic stem/progenitor cells (HSC). We found that vector insertions are cell-specific according to the differential expression profile of target cells, favouring, in PBL-GT, genes involved in immune system and T-cell functions/pathways as well as T-cell DNase hypersensitive sites, differently from HSC-GT. Chromatin conformations and histone modifications influenced integration preferences but we discovered that only H3K27me3 was cell-specifically disfavoured, thus representing a key epigenetic determinant of cell-type dependent insertion distribution. Our study shows that MLV vector insertional profile is cell-specific according to the genetic/chromatin state of the target cell both in vitro and in vivo in patients several years after GT

    531. Computational Pipeline for the Identification of Integration Sites and Novel Method for the Quantification of Clone Sizes in Clonal Tracking Studies

    Get PDF
    Gene-corrected cells in Gene Therapy (GT) treated patients can be tracked in vivo by means of vector integration site (IS) analysis, since each engineered clone becomes univocally and stably marked by an individual IS. As the proper IS identification and quantification is crucial to accurately perform clonal tracking studies, we designed a customizable and tailored pipeline to analyze LAM-PCR amplicons sequenced by Illumina MiSeq/HiSeq technology. The sequencing data are initially processed through a series of quality filters and cleaned from vector and Linker Cassette (LC) sequences with customizable settings. Demultiplexing is then performed according to the recognition of specific barcodes combination used upon library preparation and the sequences are aligned to the reference genome. Importantly, the human genome assembly Hg19 is composed of 93 contigs, among which the mitochondrial genome, unlocalized and unplaced contigs and some alternative haplotypes of chr6. While previous approaches aligned IS sequences only to the standard 24 human chromosomes, using the whole assembled genome allowed improving alignment accuracy and concomitantly increased the amount of detectable ISs. To date, we have processed 28 independent human sample sets retrieving 260,994 ISs from 189,270,566 sequencing reads. Although, sequencing read counts at each IS have been widely used to estimate the relative IS abundance, this method carries inherent accuracy constraints due to the rounds of exponential amplification required by LAM-PCR that might generate unbalances on the original clonal representation. More recently, a method based on genomic sonication has been proposed exploiting shear site counts to tag the number of original fragments belonging to each IS before PCR amplification. However, the number of cells composing a given clone could far exceed the number of fragments of different lengths that can be generated upon fragmentation in proximity of that given IS. This would rapidly saturate the available diversity of shear sites and progressively generate more and more same-site shearing on independent genomes. In order to overcome the described biases and reliably quantify ISs, we designed and tested a new LC encoding random barcodes. The new LC is composed of a known sequence of 29nt used as binding site for the primers upon amplification steps, a 6nt-random barcode, a fixed-anchor sequence of 6nt, a second 6nt-random barcode and a final known sequence of 22nt containing sticky ends for the three main restriction enzymes in use (MluI, HpyCH4IV and AciI). This peculiar design allowed increasing the accuracy of clonal diversity estimation since the fixed-anchor sequence acts as a control for sequencing reliability in the barcode area. The theoretical number of different available barcodes per clone (412=16,777,216) far exceeds the requirements for not saturating the original diversity of the analyzed sample (on average composed by around 50.000 cells). We validated this novel approach by performing assays on serial dilutions of individual clones carrying known ISs. The precision rate obtained was averagely around 99.3%, while the worst error rate reaches at most the 1.86%, confirming the reliability of IS quantification. We successfully applied the barcoded-LC system to the analysis of clinical samples from a Wiskott Aldrich Syndrome GT patient, collecting to date 50,215 barcoded ISs from 94,052,785 sequencing reads

    65. Long-Term Effects of Hematopoietic Stem Cell Gene Therapy in the Murine Model of Wiskott-Aldrich Syndrome: Persistence of Functional Correction of T Cells and Lack of Malignant Trasformation

    Get PDF
    Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema and increased risk of autoimmune disorders and lymphomas. Hematopoietic stem cell (HSC) transplantation from HLA-identical sibling donors is a resolutive treatment, but it is available only for a minority of patients. Transplantation of genetically corrected autologous HSC could represent an alternative treatment, potentially applicable to all patients. In a murine model of WAS (WAS|[minus]|/|[minus]|), we recently demonstrated correction of the T cell defect 4 months after lentiviral vector-mediated gene therapy [Dupr|[eacute]|, Marangoni, et al. Hum Gene Ther. 2006, 17]. The aim of the present study was to investigate the long-term efficacy and safety of our gene therapy approach in WAS|[minus]|/|[minus]| mice

    First Case of Patient With Two Homozygous Mutations in MYD88 and CARD9 Genes Presenting With Pyogenic Bacterial Infections, Elevated IgE, and Persistent EBV Viremia

    Get PDF
    We described for the first time a female patient with the simultaneous presence of two homozygous mutations in MYD88 and CARD9 genes presenting with pyogenic bacterial infections, elevated IgE, and persistent EBV viremia. In addition to defective TLR/IL1R-signaling, we described novel functional alterations into the myeloid compartment. In particular, we demonstrated a defective production of reactive oxygen species exclusively in monocytes upon E. coli stimulation, the inability of immature mono-derived DCs (iDCs) to differentiate into mature DCs (mDCs) and the incapacity of mono-derived macrophages (MDMs) to resolve BCG infection in vitro. Our data do not provide any evidence for digenic inheritance in our patient, but rather for the association of two monogenic disorders. This case illustrates the importance of using next generation sequencing (NGS) to determine the most accurate and early diagnosis in atypical clinical and immunological phenotypes, and with particular concern in consanguineous families. Indeed, besides the increased susceptibility to recurrent invasive pyogenic bacterial infections due to MYD88 deficiency, the identification of CARD9 mutations underline the risk of developing invasive fungal infections emphasizing the careful monitoring for the occurrence of fungal infection and the opportunity of long-term antifungal prophylaxis

    ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation

    Get PDF
    Adenosine deaminase 2 (ADA2) deficiency is an auto-inflammatory disease due to mutations in cat eye syndrome chromosome region candidate 1 (CECR1) gene, currently named ADA2. The disease has a wide clinical spectrum encompassing early-onset vasculopathy (targeting skin, gut and central nervous system), recurrent fever, immunodeficiency and bone marrow dysfunction. Different therapeutic options have been proposed in literature, but only steroids and anti-cytokine monoclonal antibodies (such as tumor necrosis factor inhibitor) proved to be effective. If a suitable donor is available, hematopoietic stem cell transplantation (HSCT) could be curative. Here we describe a case of ADA2 deficiency in a 4-year-old Caucasian girl. The patient was initially classified as autoimmune neutropenia and then she evolved toward an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. The diagnosis of ALPS became uncertain due to atypical clinical features and normal FAS-induced apoptosis test. She was treated with G-CSF first and subsequently with immunosuppressive drugs without improvement. Only HSCT from a 9/10 HLA-matched unrelated donor, following myeloablative conditioning, completely solved the clinical signs related to ADA2 deficiency. Early diagnosis in cases presenting with hematological manifestations, rather than classical vasculopathy, allows the patients to promptly undergo HSCT and avoid more severe evolution. Finally, in similar cases highly suspicious for genetic disease, it is desirable to obtain molecular diagnosis before performing HSCT, since it can influence the transplant procedure. However, if HSCT has to be performed without delay for clinical indication, related donors should be excluded to avoid the risk of relapse or partial benefit due to a hereditary genetic defect
    corecore