4 research outputs found

    Seismic site response of unstable steep slope using noise measurements : the case study of Xemxija Bay area, Malta

    Get PDF
    Landslide phenomena involve the northern coast of Malta, affecting in particular the urban area of Xemxija. Limestones overlying a clayey formation represent the shallower lithotypes that characterize the surficial geology of this area, where lateral spreading phenomena and rockfalls take place. Ambient noise records, processed through spectral ratio techniques, were analysed in order to characterize the dynamic behavior of the rock masses affected by the presence of fractures linked to the landslide body existing in the area. Experimental spectral ratios were also calculated after rotating the horizontal components of the seismic signal, and a direct estimate of the polarization angle was also performed in order to investigate the existence of directional effects in the ground motion. The results of the morphologic survey confirmed the existence of large cliff-parallel fractures that cause cliff-edge and unstable boulder collapses. Such phenomena appear connected to the presence, inside the clay formation, of a sliding surface that was identified through the interpretation of the noise measurement data. The boundaries of the landslide area appear quite well defined by the pronounced polarization effects, trending in the northeastern direction, observed in the fractured zone and in the landslide body in particular.peer-reviewe

    The 1928 eruption of Mount Etna (Italy): Reconstructing lava flow evolution and the destruction and recovery of the town of Mascali

    Get PDF
    Abstract Mount Etna in Sicily (Italy) shows more than 2,500 years of interactions between volcanic eruptions and human activity, and these are well documented in historical sources. During the last 400 years, flank eruptions have had major impacts on the urban fabric of the Etna region, especially in 1651, 1669, 1923 and 1928, and it is the last of these which is the focus of this paper. In this paper a detailed field and historical reconstruction of the 1928 eruption is presented which allows three themes to be discussed: the evolution of the flow field, lava volume and average magma discharge rate trend; the eruption's human impact, particularly the destruction of the town of Mascali; and the recovery of the region with re-construction of Mascali in a new location. Detailed mapping of lava flows allowed the following dimensions to be calculated: total area, 4.38 x 106 m2; maximum length, 9.4 km; volume, 52.91 ± 5.21 × 106m3 and an average effusion rate of 38.5 m3 s-1. Time-averaged discharged rates are calculated allowing the reconstruction of their temporal variations during the course of the eruption evidencing a high maximum effusion rate of 374 m3 s-1. These trends, in particular with regard to the Lower Fissure main phase of the eruption, are in accordance with the ‘idealized discharge model’ of Wadge (1981), proposed for basaltic eruptions driven by de-pressurization of magma sources, mainly through reservoir relaxation (i.e. elastic contraction of a magma body). The eruption took place when Italy was governed by Mussolini and the fascist party. The State response both, during and in the immediate aftermath of the eruption and in the years that followed during which Mascali was reconstructed, was impressive. This masked a less benign legacy, however, that can be traced for several subsequent decades of using responses to natural catastrophes to manufacture State prestige by reacting to, rather than planning for, disasters

    Changing hazard awareness over two decades: the case of Furnas, São Miguel (Azores)

    Get PDF
    Furnas (c. 1500 inhabitants) lies within the caldera of Furnas volcano on the island of São Miguel (Azores) and has the potential to expose its inhabitants to multiple hazards (e.g. landslides, earthquakes, volcanic eruptions and degassing). The present population has never experienced a volcanic eruption or a major earthquake, although the catalogue records six eruptions, sub-Plinian in style, over the last 2 kyr. Today, the area experiences strong fumarolic activity. In the case of an eruption, early evacuation would be necessary to prevent inhabitants from being trapped within the caldera. An awareness of potential threats and knowledge of what to do in the case of an emergency would assist in evacuation. In this paper, inhabitants’ awareness of volcanic and seismic threats in 2017 is compared with that revealed in a similar study completed more than two decades ago. It is concluded that whereas awareness of earthquakes and the dangers posed by volcanic gas discharge has increased, knowledge of the threat of volcanic eruptions and the need to prepare for possible evacuation has not. Research suggests that the changing awareness is related to effective collaboration that has developed between the regional government, through its civil protection authorities and scientists, and the people of Furnas
    corecore