91 research outputs found

    Maize transcriptome analysis upon fusarium infection in relation with host and pathogen genotypes

    Get PDF
    E’ stata approfondita l’espressione genica complessiva in spighe di mais, in seguito all’ infezione fungina. Nella prima parte del lavoro, sono stati valutati un genotipo di mais resistente ed uno suscettibile a F. verticillioides, campionando le cariossidi 48 ore dopo l’infezione. Sono state identificate circa 800 sequenze differenzialmente espresse e circa il 10% è stato assegnato alla categoria della difesa. Nel genotipo resistente, i geni coinvolti nella difesa hanno mostrato un tipo di risposta basale, mentre in quello suscettibile tali geni rispondevano specificamente all’infezione. Nella seconda parte del lavoro, l’analisi di espressione è stata estesa a fasi precoci e tardive dell’infezione utilizzando un ceppo normale ed uno mutante di F. verticillioides. Numerosi geni risultavano differenzialmente regolati 48 ore dopo l’infezione con entrambi i ceppi. Il ceppo normale era in grado di attivare i meccanismi di difesa prima del mutante. Nella terza parte del lavoro, 10 linee resistenti e suscettibili sono state infettate con 4 specie fungine. In tutti i genotipi l’espressione dei geni coinvolti nella difesa era indotta in seguito all’infezione, ma le linee resistenti presentavano una risposta basale di difesa.We investigated global gene expression in maize ears at several time points after fungal infection. In the first part of the work, resistant and susceptible genotypes were tested in kernels sampled 48 h after infection with a wild type strain of F. verticillioides. About 800 differentially expressed sequences were identified and nearly 10% assigned to the category cell rescue, defense and virulence. In the resistant genotype, defense-related genes provided basic defense against the fungus, while in the susceptible genotype defense genes responded specifically to pathogen infection. In the second part of the work the expression analysis was extended to early and late phases of infection with a wild type and a mutant strains of F. verticillioides. Kernels were sampled in the area around the point of infection. Most of genes were differentially regulated 48 h after infection with both fungal strains. The wild type strain was able to activate host defense genes before the mutant strain. In the third part of the work, ten resistant and susceptible lines were infected by different fungal species. All genotypes were able to induce the expression of defense genes upon infection, but the resistant lines showed a basal defense response

    Molecular and phenotypic characterization of a collection of white grain sorghum [Sorghum bicolor (L.) Moench] for temperate climates

    Get PDF
    AbstractSorghum [Sorghum bicolor (L.) Moench] is a subsistence crop and the main food for populations in arid or semiarid regions and it is appreciated for the production of gluten-free products, forages, raw materials for industrial transformation and packaging. The end-use of different sorghum purposes having various plant or kernel characteristics require specific breeding programs to develop the desired ideotype. Sorghum grains can be classified according to kernel color, tannins and polyphenols content: white, yellow, red, brown, and black. White sorghum is characterized by a low level of total phenolic content and tannins. The advantage of using white sorghum is: increased protein digestibility, nutritional composition and consumer acceptance similar to other cereals. A collection of 117 white grain sorghums was characterized using 10 SSRs and preliminary agronomic observations were made for main traits. SSR analysis revealed from 10 to 33 alleles per locus.Observed heterozygosity was lower than expected according to the reproduction system of sorghum. Phylogenetic analysis revealed 6 main groups of genotypes. Only one group is constituted by genotypes with the same geographical origin (Egypt) while other groups are admixtures of different countries. The principal coordinate analysis revealed good correspondence between genetic profiles and groups evidenced by similar agronomic performances

    Aroma quality of fruits of wild and cultivated strawberry (Fragaria spp.) in relation to the flavour-related gene expression.

    Get PDF
    AbstractExpression profiles of flavour-related genes and the aroma quality of fruit headspace were investigated in the four strawberry genotypes 'Reine des Vallées' (Fragaria vesca), 'Profumata di Tortona' (F mos-chata), 'Onda' and VR 177 selection (F" x ananassa). Differences in the expression level of genes coding of strawberry alcohol acyltransferase (SAAT), F. x ananassa nerolidol synthase 1 (FaNESl) and F vesca monoterpene and sesquiterpene synthases (FvPINS and PINS1, respectively) were detected among these genotypes. In fruits of F. x ananassa the terpenoid profile was dominated by nerolidol, whereas wild spe–cies produced mainly monoterpenes. It was correlated with the higher induction of FaNES1 in cultivated and PINS gene in the wild Fragaria species. The flavour biogenesis in ripening fruits was determined by the expression of SAAT gene, especially visible for 'Profumata di Tortona' and 'Onda' strawberries. The fruit solid-phase microextraction (SPME) headspace was analysed using the Gas Chromatography-Olfac–tometry (GC-O), that allows for the chromatographic separation of volatiles together with their olfactomet-ric evaluation. 'Reine des Vallées' fruits have a peculiar profile characterized by high concentrations of limonene, linalool and mesifurane that resulted in "spiced", "citrus, floral" and "sweet, baked" descriptors. The character impact compound in 'Profumata di Tortona' fruits was ethyl butanoate, responsible for "sweet" and "fruity, strawberry" descriptors. However, it was detected in lower amount in comparison to the data obtained for F. x ananassa strawberries. The sesquiterpene nerolidol was identified in both culti–vated strawberry genotypes

    Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes.

    Get PDF
    Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin myco-toxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogensand that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fif-teen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grownin field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responseswere correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisinbiosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth andfumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptibleline after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmentedexponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in theresistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi.In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype alreadyat 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genesand genes for jasmonic acid biosynthesis

    Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum.

    Get PDF
    Abstract Background: Fusarium oxysporum is one of the most common fungal pathogens causing soybean root rot and seedling blight in U.S.A. In a recent study, significant variation in aggressiveness was observed among isolates of F. oxysporum collected from roots in Iowa, ranging from highly pathogenic to weakly or non-pathogenic isolates. Results: We used RNA-seq analysis to investigate the molecular aspects of the interactions of a partially resistant soybean genotype with non-pathogenic/pathogenic isolates of F. oxysporum at 72 and 96 h post inoculation (hpi). Markedly different gene expression profiles were observed in response to the two isolates. A peak of highly differentially expressed genes (HDEGs) was triggered at 72 hpi in soybean roots and the number of HDEGs was about eight times higher in response to the pathogenic isolate compared to the non-pathogenic one (1,659 vs. 203 HDEGs, respectively). Furthermore, the magnitude of induction was much greater in response to the pathogenic isolate. This response included a stronger activation of defense-related genes, transcription factors, and genes involved in ethylene biosynthesis, secondary and sugar metabolism. Conclusions: The obtained data provide an important insight into the transcriptional responses of soybean-F. oxysporum interactions and illustrate the more drastic changes in the host transcriptome in response to the pathogenic isolate. These results may be useful in the developing new methods of broadening resistance of soybean to F. oxysporum, including the over-expression of key soybean genes

    Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance.

    Get PDF
    Background: Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance. Results: A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection. Conclusions: The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes andmay have relevance to study other pathosystems involving mycotoxin-producing fungi

    The Rediscovery of Traditional Maize Agrobiodiversity: A Study Case from Northern Italy

    Get PDF
    Nowadays, agriculture is under the pressure of climate change and new pathogen outbreaks while farmers are requiring breeders to develop more resistant and resilient genotypes. The genetic base for breeding may be increased through appropriate conservation, description and characterization of local varieties and germplasm collections that have never been used in breeding, and which could be sources of useful alleles. In this framework, the present paper focuses on eight maize landraces of the eastern part of Emilia-Romagna, derived from the Italian maize collection sampled in 1954. Landraces are characterized by a short cycle length and different kernel types—mainly flint-like or an intermediate type of yellow or yellow–orange color—while dent landraces are less represented. Pigmented and white corns are absent even though one landrace (Va213) showed the presence of scattered blue kernels on yellow ears. Ear shape is frequently conical, a trait associated with drought-resistance and common in Italian traditional landraces. Genetic characterization was carried out on 529 individuals by using 10 SSR markers. A total of 68 different alleles, ranging from 4 for markers (phi084 and umc1401) to 11 (phi031) and from 27 (Va217) to 50 (Va211), were evidenced at the individual and population level. AMOVA analysis revealed a small amount (19%) of variability between populations, as supported also by PCoA, with the only exception of Va217, which is different from the others, as evidenced also by phylogenetic analysis. Population structure analysis resulted in the identification of three and four population levels, which are consistent with previous results

    Morphological and Genetic Characterization of Local Maize Accessions from Emilia Romagna Region, Italy

    Get PDF
    Italian maize germplasm is particularly rich in local materials and each region is characterized by the presence of peculiar local varieties deriving from centuries of adaptation, selection and cultivation. While the introduction of hybrids, during the 1950s, led to the disappearing of many of these varieties, some have been maintained in cultivation by farmers, frequently in marginal areas, as a kind of family heritage. Local varieties were identified throughout field surveys carried out in recent years. The discovery of a traditional popcorn variety over the most common flint and semi-flint materials used for production of polenta was interesting. Since these varieties have never been adequately described and reported in scientific literature, this study was aimed to solve this lack of knowledge on recently discovered local maize populations. Characterization represents the first step of a process focused on the preservation and possible exploitation of important genetic resources. Traditional materials are a useful reservoir of genes for adaptation to local conditions and climate changes. Adequate breeding programs can use such germplasm for developing new and more resilient varieties. These local materials have been characterized at the morphological level highlighting plant, ear and kernel differences. Genetic characterization, carried out on 455 individuals by the use of 10 SSR markers, revealed 62 different alleles ranging from four for markers phi127, phi076 and phi084 to nine for marker p-bnlg176. The landraces are well distinguishable at genetic level since 40% of genetic variability is present among accessions. Five landraces are characterized by the presence of private alleles and heterozygosity levels are generally good. These findings support the possibility to correctly preserve local materials through in situ conservation. Phylogenetic analysis evidenced the presence of varietal clusters, the clearest one formed by three red-pigmented accessions. STRUCTURE analysis revealed that five landraces have a well-defined genetic attribution while the remaining two (EMR04-Mais Rosso di Rasora and EMR10-Mais del Principe di Scavolino) are both constituted by two different backgrounds

    Public perception of new plant breeding techniques and the psychosocial determinants of acceptance: A systematic review

    Get PDF
    Advancements in New Plant Breeding Techniques have emerged as promising tools for enhancing crop productivity, quality, and resilience in the face of global challenges, such as climate change and food security. However, the successful implementation of these techniques relies also on public acceptance of this innovation. Understanding what shapes public perception and acceptance of New Plant Breeding Techniques is crucial for effective science communication, policymaking, and the sustainable adoption of these innovations. The objective of this systematic review was to synthesize existing research on the public perception of New Plant Breeding Techniques applied to food crops and explore the psychosocial determinants that influence acceptance. Twenty papers published between 2015 and 2023 were included on various New Plant Breeding Techniques and their reception by the general public. Determinants affecting the acceptance of food crops derived from New Plant Breeding Techniques were categorized into six areas: sociodemographic factors, perceived benefits and risks, attitudes toward science, communication strategies, personal values, and product characteristics
    • …
    corecore