40 research outputs found

    Modeling Lung Carcinoids with Zebrafish Tumor Xenograft

    Get PDF
    Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)(y1) zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening

    Novel Mechanisms of Tumor Promotion by the Insulin Receptor Isoform A in Triple-Negative Breast Cancer Cells

    Get PDF
    The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor–stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by IngenuityÂź: IPAÂź software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-ÎČ as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells

    Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer

    Get PDF
    Background: Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor-stroma interactions may yield novel therapeutic targets for prostate cancer. Methods: Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity (R) : IPA (R) software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). Results: Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-beta as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. Conclusions: These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells

    Pathology reporting in neuroendocrine neoplasms of the digestive system: everything you always wanted to know but were too afraid to ask

    Get PDF
    During the 5th NIKE (Neuroendocrine tumors Innovation in Knowledge and Education) meeting, held in Naples, Italy, in May 2019, discussions centered on the understanding of pathology reports of gastroenetropancreactic neuroendocrine neoplasms. In particular, the main problem concerned the difficulty that clinicians experience in extrapolating relevant information from neuroendocrine tumor pathology reports. During the meeting, participants were asked to identify and rate issues which they have encountered, for which the input of an expert pathologist would have been appreciated. This article is a collection of the most rated questions and relative answers, focusing on three main topics: 1) morphology and classification; 2) Ki67 and grading; 3) immunohistochemistry. Patient management should be based on multidisciplinary decisions, taking into account clinical and pathology-related features with clear comprehension between all health care professionals. Indeed, pathologists require clinical details and laboratory findings when relevant, while clinicians require concise and standardized reports. In keeping with this last statement, the minimum requirements in pathology datasets are provided in this paper and should be a baseline for all neuroendocrine tumor professionals

    Commentary: Case Report: Abdominal Lymph Node Metastases of Parathyroid Carcinoma: Diagnostic Workup, Molecular Diagnosis, and Clinical Management

    Get PDF
    In the issue of March 2021, Lenschow et al. reported the case of a 46-year-old woman with recurrent, programmed death-ligand-1 (PD-L1) negative, tumor mutational burden (TMB)-high parathyroid carcinoma (PC), who showed stable disease as her best response on imaging, and a three-fold drop in PTH after treatment with intravenous pembrolizumab. Given the remarkable results obtained by Lenschow et al. with the anti-PD-1 agent pembrolizumab in the above-mentioned case, we performed an extensive search for possible further relevant data sources, including a) full published articles in international online databases (PubMed, Web of Science, Scopus, and Embase); b) preliminary reports in selected international meeting abstract repositories (American Society of Clinical Oncology, ASCO; European Neuroendocrine Tumor Society, ENET; European Society for Medical Oncology, ESMO); c) registered clinical trials in the U.S. National Institutes of Health registry of clinical trials (http://clinicaltrials.gov) and in any primary register of the WHO International Clinical Trials Registry Platform (ICTRP)

    Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms

    No full text
    Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs

    Somatostatin-Dopamine Chimeric Molecules in Neuroendocrine Neoplasms

    No full text
    Neuroendocrine neoplasms (NENs) are a widely heterogeneous family of neoplasms arising from neuroendocrine cells, which are interspersed throughout the body. Despite NENs are relatively rare, their incidence and prevalence are constantly increasing probably due to the improvement in earlier diagnosis and patients’ management. When surgery is not curative, particularly for patients with metastatic disease, several medical options are available. Somatostatin analogues (SSA) are the first-line medical therapy for well-differentiated NENs. Interestingly, the heterodimerization of somatostatin receptors (SSTs) with dopamine receptors (DRs) has been discovered in NENs. This phenomenon results in hybrid receptors with enhanced functional activity. On these bases, chimeric molecules embracing somatostatin and dopamine features have been recently developed. The aim of this review is to provide a comprehensive overview of the available preclinical and clinical data regarding chimeric somatostatin-dopamine agonists as a new class of “magic bullet” in the therapy of NENs
    corecore