56 research outputs found

    Analysis of the interaction of thermoacoustic modes with a Green's function approach:

    Get PDF
    In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green's function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes

    Generazione e rivelazione di strutture elettromagnetiche lentamente variabili in interazione laser-plasma

    Get PDF
    La propagazione di un impulso laser ad alta intensità in un plasma sottodenso è stata studiata numericamente attraverso simulazioni 'particle-in-cell' (PIC) in due dimensioni (2D), su scale temporali dell'ordine del picosecondo. Sono stati analizzati gli effetti della dinamica degli ioni, che segue il 'self-channeling' dell'impulso. L'accelerazione radiale degli ioni porta alla 'rottura' delle pareti del canale, causando l'inversione del campo elettrico radiale generatosi per la separazione di carica. Per tempi successivi inoltre si osserva le formazione di strutture di campo quasi-periodiche, lentamente variabili, le cui caratteristiche sono simili a quelle di vortici magnetici e 'post-solitoni' allo stesso tempo

    Improved ion acceleration via laser surface plasma waves excitation

    Get PDF
    International audienceThe possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10 l0), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities rangingfrom 10^19 to 10^20 W/cm2.µm2. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find anenhancement of the maximum ion energy of a factor ~2 compared to the cases where the targetsurface is flat

    Model and phase-diagram analysis of photothermal instabilities in an optomechanical resonator

    Get PDF
    A study of the phototermal instabilities in a Fabry-Perot cavity is reported, where one mirror consists of a silicon-nitride membrane coated by the molecular organic semiconductor tris(8-hydroxyquinoline) aluminum and silver layers. We propose a theoretical model to describe the back-action associated with the delayed response of the cavity field to the radiation pressure force and the photothermal force. For the case under investigation, the photothermal force response occurs on a timescale that is comparable to that of mirror oscillations and dominates over the radiation pressure force. A phase diagram analysis has been performed to map the stability of the static solution as a function of the control parameters. The model equations are integrated numerically and the time history is compared to experimental measurements of the transmitted field and displacement of the membrane. In both experimental and theoretical data we observe large amplitude oscillations when the cavity length is scanned at a low speed compared to the growth rate of the instability. The perturbation is found to evolve through three regimes: sinusoidal oscillations, double peaks and single peaks followed by a lethargic regime. When the cavity length is scanned in opposite directions, dynamical hysteresis is observed, whose extension has a power law dependence on the scanning rate

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    Joint Observation of the Galactic Center with MAGIC and CTA-LST-1

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
    • …
    corecore