33 research outputs found
Electrokinetic flow of aqueous electrolyte in amorphous silica nanotubes
We study the pressure-driven flow of aqueous NaCl in amorphous silica nanotubes using nonequilibrium molecular dynamics simulations featuring both polarizable and non-polarizable molecular models. Different pressures, electrolyte concentrations and pore sizes are examined. Our results indicate a flow that deviates considerably from the predictions of Poiseuille fluid mechanics. Due to preferential adsorption of the different ionic species by surface SiO! or SiOH groups, we find that a significant electric current is generated, but with opposite polarities using polarizable vs. fixed charge models for water and ions, emphasizing the need for careful parameterization in such complex systems. We also examine the influence of partial deprotonation of the silica surface, and we find that much more current is generated in a dehydrogenated nanopore, even though the overall efficiency remains low. These findings indicate that different methods of nanopore preparation, which can produce a range of surface properties, should be examined more closely in the related experimental methods to generate electrokinetic current
Effect of Field Direction on Electrowetting in a Nanopore
We manifest a significant influence of field direction and polarity on surface wetting, when the latter is tuned by application of an external electric field. Thermodynamics of field-induced filling of hydrocarbon-like nanopores with water is studied by open ensemble molecular simulation. Increased field strength consistently results in water-filling and electrostriction in hydrophobic nanopores. A threshold field commensurate with surface charge density of about one elementary charge per 10 nm2 suffices to render prototypical paraffin surfaces hydrophilic. When a field is applied in the direction perpendicular to the confining walls, the competition between orientational polarization and angle preferences of interfacial water molecules relative to the walls results in an asymmetric wettability of opposing surfaces (Janus interface). Reduction of surface free energy observed upon alignment of confinement walls with field direction suggests a novel mechanism whereby the applied electric field can operate selectively on water-filled nanotubes while empty ones remain unaffected
Nanoconfined water under electric field at constant chemical potential undergoes electrostriction
Electric control of nanopore permeation by water and solutions enables gating in membrane ion channels and can be exploited for transient surface tuning of rugged substrates, to regulate capillary permeability in nanofluidics, and to facilitate energy absorption in porous hydrophobic media. Studies of capillary effects, enhanced by miniaturization, present experimental challenges in the nanoscale regime thus making molecular simulations an important complement to direct measurement. In a molecular dynamics (MD) simulation, exchange ofwater between the pores and environment requires modeling of coexisting confined and bulk phases, with confined water under the field maintaining equilibrium with the unperturbed environment. In the present article, we discuss viable methodologies for MD sampling in the above class of systems, subject to size-constraints and uncertainties of the barostat function under confinement and nonuniform-field effects. Smooth electric field variation is shown to avoid the inconsistencies of MD integration under abruptly varied field and related ambiguities of conventional barostatting in a strongly nonuniform interfacial system. When using a proper representation of the field at the border region of the confined water, we demonstrate a consistent increase in electrostriction as a function of the field strength inside the pore open to a field-free aqueous environment
Wettability of pristine and alkyl-functionalized graphane
Graphane is a hydrogenated form of graphene with high bandgap and planar structure insensitive to a broad range of chemical substitutions. We describe an atomistic simulation approach to predict wetting properties of this new material. We determine the contact angle to be 73°. The lower hydrophobicity compared to graphene is explained by the increased planar density of carbon atoms while we demonstrate that the presence of partial charges on carbonand hydrogen atoms plays only a minor role. We further examine the effects of graphane functionalization by alkyl groups of increasing chain lengths. The gradual increase in contact angle with chain length offers a precise control of surface wettability. A saturated contact angle of 114° is reached in butylated form. We find the saturation of contact angle with respect to the length of the functional groups to coincide with the loss of water\u27s ability to penetrate the n-alkyl molecular brush and interact with carbon atoms of the underlying lattice. Since no experimental data have yet become available, our modeling results provide the first estimate of the wettability of graphane. The results also show how its alkyl functionalization provides the basis for a variety of chemical modifications to tune hydrophilicity while preserving the planar geometry of the substrate
Orientational correlations in liquid acetone and dimethyl sulfoxide: A comparative study
The structure of acetone and dimethyl sulfoxide in the liquid state is investigated using a combination of neutron diffractionmeasurements and empirical potential structure refinement (EPSR) modeling. By extracting the orientational correlations from the EPSR model, the alignment of dipoles in both fluids is identified. At short distances the dipoles or neighboring molecules are found to be in antiparallel configurations, but further out the molecules tend to be aligned predominately as head to tail in the manner of dipolar ordering. The distribution of these orientations in space around a central molecule is strongly influenced by the underlying symmetry of the central molecule. In both liquids there is evidence for weak methyl hydrogen to oxygen intermolecular contacts, though these probably do not constitute hydrogen bonds as such
Investigations on the structure of dimethyl sulfoxide and acetone in aqueous solution
Aqueous solutions of dimethyl sulfoxide (DMSO) and acetone have been investigated using neutron diffraction augmented with isotopic substitution and empirical potential structure refinement computer simulations. Each solute has been measured at two concentrations—1:20 and 1:2 solute:water mole ratios. At both concentrations for each solute, the tetrahedral hydrogen bonding network of water is largely unperturbed, though the total water molecule coordination number is reduced in the higher 1:2 concentrations. With higher concentrations of acetone, water tends to segregate into clusters, while in higher concentrations of DMSO the present study reconfirms that the structure of the liquid is dominated by DMSO-water interactions. This result may have implications for the highly nonideal behavior observed in the thermodynamic functions for 1:2 DMSO-water solutions
Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion
Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization.We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solventaveraged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing –COOK or –NH3Cl groups. To assess the change in nanoparticles’ dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%–50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization
Field exposed water in a nanopore: liquid or vapour?
We study the behavior of ambient temperature water under the combined effects
of nanoscale confinement and applied electric field. Using molecular
simulations we analyze the thermodynamic causes of field-induced expansion at
some, and contraction at other conditions. Repulsion among parallel water
dipoles and mild weakening of interactions between partially aligned water
molecules prove sufficient to destabilize the aqueous liquid phase in isobaric
systems in which all water molecules are permanently exposed to a uniform
electric field. At the same time, simulations reveal comparatively weak
field-induced perturbations of water structure upheld by flexible hydrogen
bonding. In open systems with fixed chemical potential, these perturbations do
not suffice to offset attraction of water into the field; additional water is
typically driven from unperturbed bulk phase to the field-exposed region. In
contrast to recent theoretical predictions in the literature, our analysis and
simulations confirm that classical electrostriction characterizes usual
electrowetting behavior in nanoscale channels and nanoporous materials.Comment: 20 pages, 6 figures + T.O.C. figure, in press in PCC