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Nanoconfined water under electric field at constant chemical potential
undergoes electrostriction

Davide Vanzo, D. Bratko,a) and Alenka Luzarb)

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA

(Received 26 October 2013; accepted 27 January 2014; published online 20 February 2014)

Electric control of nanopore permeation by water and solutions enables gating in membrane ion
channels and can be exploited for transient surface tuning of rugged substrates, to regulate capil-
lary permeability in nanofluidics, and to facilitate energy absorption in porous hydrophobic media.
Studies of capillary effects, enhanced by miniaturization, present experimental challenges in the
nanoscale regime thus making molecular simulations an important complement to direct measure-
ment. In a molecular dynamics (MD) simulation, exchange of water between the pores and envi-
ronment requires modeling of coexisting confined and bulk phases, with confined water under the
field maintaining equilibrium with the unperturbed environment. In the present article, we discuss
viable methodologies for MD sampling in the above class of systems, subject to size-constraints
and uncertainties of the barostat function under confinement and nonuniform-field effects. Smooth
electric field variation is shown to avoid the inconsistencies of MD integration under abruptly
varied field and related ambiguities of conventional barostatting in a strongly nonuniform inter-
facial system. When using a proper representation of the field at the border region of the con-
fined water, we demonstrate a consistent increase in electrostriction as a function of the field
strength inside the pore open to a field-free aqueous environment. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865126]

I. INTRODUCTION

Wetting propensity by water, and its phase behavior in
nonpolar porous media, can be efficiently modulated by ap-
plying electric field. Field-induced nanopore permeation un-
derlies the function of cell membrane channels1 and can pro-
vide a mechanism for flow control in nanofluidic devices.2

While it is possible to obtain first order estimates of pore
wetting or dewetting from continuum descriptions,2, 3 both
static4–7 and dynamic responses8–10 of nanoconfined water
to electric field show significant quantitative or even qual-
itative differences from macroscopic predictions. Molecular
simulations are well suited to explore these differences and
underlying molecular mechanisms, which are often hard to
approach by direct experiments. A number of recent simula-
tion studies1, 4–6, 11, 12 reached seemingly different conclusions
about electric field effects on nanoconfined water, drawing at-
tention to the essential role of imposed conditions. As dis-
cussed in Refs. 13 and 14, different conditions can lead to
qualitatively different responses of bulk and confined water
to the field. Specifically, the field enhances the density6 and
stabilizes the liquid phase13, 14 if the confinement is open to a
field-free bath supplying extra molecules to preserve constant
chemical potential. In other scenarios, the field can reduce the
density12, 15 and increase the volatility12 of confined water. In
addition to fixed state functions (e.g., amount of substance,
volume, pressure, temperature, field strength, and chemical
potential), it is essential to specify the region affected by the

a)dbratko@vcu.edu
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field. Several practical problems, including electric control
of nanofluidics, current regulation in nanopores,2 or energy
absorption devices,16, 17 involve aqueous confinements equili-
brated with the surrounding bulk phase, such that both phases
are characterized by equal chemical potentials. In this com-
mon scenario, the field is either limited to the confinement, or
extended over the whole system including the bulk phase. In
the former case, chemical potential is determined by the ther-
modynamic state of the environment, with any reduction in
the chemical potential under the field being compensated by
a density increase. If the field affects the environment as well,
however, chemical potential typically decreases with increas-
ing strength of the field. In the second scenario, the densities
of both phases change with the field. The change, however,
is different in each phase and the density can also be lowered
compared to the field-free system.14, 18

Clearly, electric control of nanowetting is most effec-
tive when the field is applied in the confinement without
perturbing the surrounding reservoir. This setup is easily
amenable4, 6, 7, 13 to Monte Carlo approaches, e.g., the Grand
Canonical (GCMC) or Gibbs Ensemble (GMC) simulations,
were nonphysical molecule exchanges enable modeling of the
field-exposed confinement separately from the bulk phase. In
Molecular Dynamics (MD), on the other hand, transfer of
molecules between the two coexisting phases involves both
regions in direct physical contact. Special care is warranted
in modeling the interface between the unperturbed and field-
exposed domains. In the most direct approach, the field is
introduced by internal charges, e.g., ionic species distributed
on confining surfaces, or at ion channel orifices, to produce a
field of desired strength and location.1, 9, 19–21 This technique

0021-9606/2014/140(7)/074710/9/$30.00 © 2014 AIP Publishing LLC140, 074710-1
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captures realistic situations in ionized pores or ion channels,
but is less appropriate for studies of adjustable fields between
capacitor electrodes and becomes computationally demand-
ing when the environment has to include an unperturbed bulk-
like region, making it necessary to extend the reservoir bound-
aries well beyond the range of charge-induced perturbations.
The same concern applies to the more complex and compute
intense constant-electrode-potential alternatives.22–24

A more efficient alternative is to impose a uniform ap-
plied field inside the confinement without concerning the
underlying charge distribution (implicitly determined by the
Poisson equation). This approach was used in an interesting
study of field effects on confined water by Vaitheesavaran
et al.;5 however, their work did not explicitly address the con-
ditions at the interface between the region affected by the field
and the field-free environment. In the present article, we dis-
cuss the possible implementations of the approach and de-
scribe a viable treatment of the interface between the field-
exposed and unperturbed regions. As we show shortly, it is
essential to treat the field at this interface self-consistently.
We evaluate the artifacts associated with MD integration in
a spatially discontinuous field. We then demonstrate a satis-
factory MD implementation in model systems where we re-
place the stepwise change in the field strength by a smooth
transition characterized by appropriately matched, gradually
fading field components acting along, and normal to, the sur-
face dividing the two uniform regions. We also discuss the
use of conventional Nose-Hoower barostat25 in the presence
of discontinuous field. We validate its performance through
comparison with a system where the pressure is buffered by
the inclusion of auxiliary vapor pockets coexisting with the
liquid aqueous phase.26, 27

Our model calculations show that water uptake in a con-
finement consistently increases with the strength of local elec-
tric field, conforming to the classical electrostriction behav-
ior in agreement with previous Monte Carlo studies.6, 7, 13 The
improvements we have made in modeling the interface be-
tween the field-exposed and unperturbed regions can explain
the differences between our findings and the system behavior
observed at equivalent conditions in an earlier MD approach.5

II. MODELS AND METHODS

A. Model specifications

We use a rectangular simulation box of size LxLyLz

∼ 62 × 62 × 50 Å3, replicated periodically to mitigate fi-
nite size effects. For the sake of simplicity, we choose the
origin of the coordinate system to coincide with the box cen-
ter. Our model confinement, shown in Fig. 1(a), consists of
a pair of circular platelets of 4 nm diameter at the separa-
tion d = 1.2 nm, placed symmetrically above and below the
plane z = 0. The circular shape (Fig. 1(b)) minimizes the
confinement/reservoir border area and removes any depen-
dence of the confinement properties on the direction along the
(x,y) plane. The platelets are comprised of rigid hexagonal lat-
tice mimicking reparameterized28 graphene, a standard wall
material in computational studies of confined water.5, 29–31

The nanopore is surrounded by 4893 water molecules at

FIG. 1. (a) Cartoon of the simulated system showing the side view of the
confinement consisting of a pair of disk-like platelets (grey) immersed in an
aqueous reservoir. Blue color denotes unperturbed liquid water and yellow
color corresponds to water under electric field; the arrows indicate the direc-
tion of the field. The system is periodically replicated in lateral directions x,y
(parallel to the disks) while it is closed by purely repulsive walls placed at
the bottom and the top of the simulation box. White regions correspond to
the pressure-buffering vapor pockets26, 27 used in NVE simulations. Repul-
sive walls and vapor pockets were removed in simulations with Nose-Hoover
barostating (NPT), where the system was periodic in all three dimensions.
(b) A top-view snapshot of the confinement showing the borders between the
regions under homogeneous (r < rin), inhomogeneous (rin ≤ r ≤ rout), and
vanishing (r > rout) electric field.

vanishing external pressure, Pz ∼ 0. To enable consistent
comparisons with previous works,1, 5–7, 19, 28 we model wa-
ter molecules using the extended simple point charge model
(SPC/E).32–34 The model is well known for its satisfactory
performance in studies of both interfacial and dielectric prop-
erties of water.35–39 The interaction between water oxygens
and the atoms of the confinement platelets is described by
the Lennard Jones (LJ) potential. The LJ parameters of the
platelet atoms, σ CC = 3.214 Å and εCC = 0.0231 kcal mol−1,
correspond to System 17 from Table 3 of Werder et al.,28

which we choose to mimic a strongly hydrophobic solid with
contact angle θ c ∼ 128o. At these conditions and no elec-
tric field, confined liquid state is metastable with respect to
capillary evaporation.5, 40–49 All nonelectrostatic interactions
were truncated and shifted to zero at the cutoff distance rc

= 9 Å and we use Lorentz-Berthelot mixing rules for cross-
interactions. To evaluate any effect of water/water interactions
across the graphene platelets, we also performed a few cal-
culations using platelets of butylated graphane50, 51 (fully hy-
drogenated graphene), functionalized on the inner side of the
plates. The distance of ∼15 Å, separating the 1st hydration
layers on the opposite sides of butylated graphane was more
than twice bigger than in the case of graphene, effectively re-
moving any correlations between these layers. Both materials
were characterized in our previous work.50

To validate the barostat function in the presence of a
steeply decaying field, we compare two different approaches.
We use either the Nose-Hoover barostat25 embedded in our
MD code,52 or the pressure-buffering method,26, 27 which re-
lies on the coexistence of liquid and vapor phases in the sys-
tem. In the latter setup, two vapor pockets are created at
the top and bottom of the simulation box situated between
a pair of purely repulsive walls in analogy with previous
works26, 27 (see Fig. 1(a)). In the system with the Nose-Hoover
barostat, we apply the usual, three-dimensional periodic
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boundary conditions. The pressure-buffered system, on the
other hand, is replicated only in lateral directions. We use
the Yeh and Berkowitz adaptation53 of the Ewald sums to ac-
count for the lack of periodicity in the vertical (z) direction.
Repulsive walls in contact with the two vapor pockets inter-
act with oxygen atoms of water through a harmonic potential
with spring constant of 20 kcal mol−1 Å−2. MD simulations
are carried out by the LAMMPS simulation package in the
NPT ensemble at ambient pressure or, in the pressure-buffered
case, in the NVE ensemble. Because of vapor/liquid coexis-
tence, the average pressure in the latter system corresponds to
the saturated vapor pressure at given conditions. The temper-
ature is maintained at 300 K by Nose-Hoover thermostat with
100 fs time constant. The NVE systems are run at essentially
identical temperature, established by careful pre-equilibration
at NVT conditions. Velocity Verlet integrator is used with sim-
ulation time step 1 fs. Long-range electrostatic interactions
are treated by particle-particle-particle mesh solver (PPPM)
with a real-space cutoff of 9 Å and relative precision toler-
ance in force per atom of 10−5.

B. Applied electric field

To model the behavior of a laterally homogeneous
slab of field-exposed water, a uniform electric displacement
field D(r, z) = εo E0(r, z) = (0, 0, εoE

0
z (0, 0)), perpendicu-

lar to the confining platelets is imposed inside the confine-
ment. εo is the permittivity of vacuum. The field could also
be acquired by means of explicit wall charges, however, with
the field due the charges propagating outside the confine-
ment, the reservoir size should be increased to accommodate
a domain of unperturbed bulk-like water. Generating a near-
homogeneous field with moderate finite-size effects in the
confinement core would also require the use of bigger confin-
ing plates. Our approach avoids considerable computational
costs associated with system-size increases, which would be
required in the alternative scenario.

In view of the cylindrical symmetry of the confinement,
we replace lateral coordinates x and y by the radial coordi-
nate r = (x2 + y2)1/2. The vertical (z) component of the field,
E0

z , is constant in the confinement interior and vanishes in the
surrounding bulk phase. The energy U of interaction of wa-
ter molecules with the applied electric field is given by the
expression,

U (X i) =
∑

j

qj rj E0, (1)

where Xi denotes the position and orientation of water
molecule i and index j runs over the three partial charges qj of
the molecule. At the interface between the confinement and
the unperturbed reservoir, where the field is nonuniform, the
appropriate relation is

U (X i) =
∑

j

qjψ(rj ), where E0(r) = −∇ψ(r). (2)

ψ(r) = ψ(r, z) is the contribution of the imposed field to the
local electrostatic potential. Equation (2) also describes the
ion-field interaction if pure water is replaced by salt solution.
In our model system, a natural reference point for the imposed

potential is the center of the box, i.e., ψ(0, 0) = 0, which by
symmetry further implies that ψ(r) vanishes for all lateral po-
sitions on the system midplane, ψ(r, 0) = 0 for any r. Inside
the region characterized by a homogeneous field Eo with van-
ishing lateral components Ex and Ey, electrostatic potential
is determined solely by the height z, ψ(r, z) = −zE0

z (0, 0).
At the interface between the confinement and the field-free
reservoir, however, the field depends on r, Eo = Eo(r,z), and
ψ = ψ(r, z).

We consider two possible forms for the radial depen-
dence of the imposed field at the interface between the two
regions. In both cases we describe the transition from the ho-
mogeneous field in the confinement to vanishing field in the
environment in terms of the decay function f(r):

E0
z (r, z) = E0

z (0, 0)f (r), (3)

with f(r) equal to unity within the homogeneous region inside
the confinement and zero in the bulk phase. The first of the
two possible forms of the decay function f(r) at the interface
between the two regions describes the change in terms of a
step function

f (r) = 1 − θ (r − rout ), (4)

where θ (x) is the Heaviside step function, which vanishes for
negative x and equals unity for positive x, hence the plane
r = rout separates the domains with homogeneous fields |E|
= E0

z and |E| = 0, in analogy with the system considered in
Ref. 5. Alternatively, the field decay can be spread over a finite
interval rin ≤ r ≤ rout (Fig. 1(b)) of width of at least O(d/2),
using a smooth function f(r) = 1 for r ≤ rin, f(r) = 0 if r ≥ rout,
and 1 ≥ f(r) ≥ 0 in between. Without any loss in generality,
in the present study we employ the smooth decay function,

1 if rs ≤ 0
f (rs) = 1

2 [cos(πrs) + 1] if 0 ≤ rs ≤ 1, rs = r−rin

rout−rin

0 if rs > 1.

(5)
Fig. 2 illustrates the decay function from Eq. (5) and its

derivative within the interval between rin and rout. By avoid-
ing the discontinuities in the electrostatic potential, this form
simplifies a self-consistent integration of equations of motion
in the transition region. The singularity introduced in Eq. (4)
becomes apparent as we consider the radial component of the
field, E0

r (r, z) = −∂ψ(r, z)/∂r . While E0
r vanishes in homo-

geneous regions (r < rin or r > rout), the variation of E0
z at the

interface implies the presence of nonzero radial field. Since
E0(r, z) = −∇ψ(r, z) represents a conservative vector field,
the following relation has to be obeyed:

∂2ψ(r, z)

∂z∂r
= ∂2ψ(r, z)

∂r∂z
, i.e.,

∂E0
r (r, z)

∂z
= ∂E0

z (r, z)

∂r
. (6)

For the selected form of the imposed field, Eq. (3),

∂E0
r (r, z)

∂z
= E0

z (0, 0)
∂f (r)

∂r
. (7)

Since E0
r vanishes at z = 0 and E0

z does not depend on z,
integration of Eq. (6) gives

E0
r (r, z) = zE0

z (0, 0)
∂f (r)

∂r
. (8)
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FIG. 2. Decay function f(rs) and its derivative within the interval 0 ≤ rs

≤ 1, rs = (r − rin)/(rout − rin). See Fig. 1(b).

For the special case described by Eq. (4)

E0
r (r, z) = −zE0

z (0, 0)δ(r − rin). (9)

The magnitude of the radial component of the field at
the interface between the two regions increases in propor-
tion to the distance from the confinement midplane z = 0.
While the continuous form of f(r) described by Eq. (5) al-
lows straightforward integration of the equations of mo-
tion, the discontinuous field representation of Eq. (4) im-
plies radial field of the form of the Dirac’s impulse func-
tion δ(r-rin), which warrants the use of Discontinuous MD
(DMD).54, 55 In this technique, a molecule crossing the field-
discontinuity plane acquires a force impulse changing its mo-
mentum and kinetic energy in proportion to the instantaneous
change in the molecule’s potential energy upon the crossing.
The direction of the momentum change is given by the nor-
mal to the discontinuity plane. DMD is typically applied to
systems with no continuous intermolecular forces. In these
cases, linear molecular motion enables accurate predictions
of future crossing events,54, 55 allowing efficient trajectory
calculation. To accommodate continuous intermolecular in-
teractions and the discontinuous field simultaneously would
require the combination of conventional MD and DMD,
which is clearly impractical as curved molecular trajectories
preclude analytic predictions of crossing events. Our trial cal-
culations illustrate the consequences of ignoring the contri-
bution of crossing events to the energy drift, the deviations
in molecular partitioning between the reservoir and the con-

finement, and pressure control in the inhomogeneous system.
The use of smoothed field profile, on the other hand, offers
a viable representation for MD studies and, as we will show
shortly, supports the Nose–Hoover barostat while avoiding the
need for discontinuity pressure-correction.25

III. RESULTS AND DISCUSSION

In this section, we compare the results of two different
representations of the interface between the field-controlled
confinement and field-free bath. We use systems with smooth
and abrupt decays of the field at the confinement border to il-
lustrate the consequences of the omission of the impulse term
associated with the step-function representation.

To fix the chemical potential of water, the pressure in the
reservoir is held close to zero by relying on two different tech-
niques. In microcanonical (NVE) simulations, performed to
verify the accuracy of MD integration, the pressure is fixed at
vapor pressure value due to the presence of two vapor pockets,
placed at the top and bottom walls of the simulation box.26, 27

Water structures from NVE runs are compared with those ob-
tained in parallel calculations in NPT ensemble with the Nose-
Hoover algorithm25 used for temperature and pressure con-
trol. When using the latter method, confinement plates are
held at fixed separation despite small fluctuations of the vol-
ume of the simulation box. In each of the two ensembles, we
monitor the behavior of the system in the absence of external
electric field and in two systems with field E = (0, 0, Ez,) ap-
plied across the confinement. In one of the systems (system
S), the field Ez decays smoothly over a finite width between
radial distances rin = 15 Å and rout = 19 Å following Eq. (5).
Trial calculations showed the smoothing interval can be var-
ied without importantly affecting any of the properties of the
confined fluid at r < rin, or its equilibrium with the bulk phase.
In the second system with nonzero field, (system A), the field
Ez is abruptly truncated at rout = 19 Å as described by Eq. (4).
Using this model, we verify the performance of a standard
MD algorithm without accounting for the impulse54 of elec-
tric force on charges crossing the field cutoff plane, Eq. (8).
For random crossings and recrossings of molecular charges,
the concomitant momentum changes should cancel out over a
long observation time. However, this cancellation is no longer
possible when molecules inside the confinement begin align-
ing with the field. For partially aligned molecules escaping
from the confinement, the net effect of a crossing event is a
momentum change, predominantly pointing in the inward di-
rection. The magnitude of the change is determined from the
condition of energy conservation,54, 55 which requires a reduc-
tion in the molecule kinetic energy to compensate the loss of
the favorable interaction with the field. If kinetic energy, asso-
ciated with the radial velocity of the molecule, is not sufficient
to overcome the loss of the favorable electrostatic energy, the
crossing does not occur and the molecule bounces from the
plane r = rout. The radial field described in Eq. (8) is there-
fore expected to impede molecular escapes from the confine-
ment, or facilitate the molecules’ return after a successful es-
cape. Approximate treatments, where the radial impulse field
is neglected,5 can therefore underestimate the accumulation
of dipolar molecules in the field-exposed region. We estimate
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the magnitude of this effect by comparing the systems with
continuous and abrupt field truncation separately in NVE and
NPT ensembles. But first we use the NVE simulation to test
the consequences of the omission of the force impulse term
on system’s energy conservation.

A. Energy conservation

In this section we present the results for isolated systems’
energies as a function of time during MD simulations in the
microcanonical (NVE) ensemble. In Fig. 3 we compare sys-
tems with no field (blue curve) and systems with smooth (sys-
tem S, green) or abrupt field truncation (system A, red) during
2 ns runs, started after thorough equilibration in NVT ensem-
ble at 300 K.

The strength of the applied field E0
z (0, 0) corresponds

to the imposed electric displacement field Dz = 0.031 C
m−2 (comparable to the displacement field next to moder-
ately charged colloids or lamellar liquid crystals56, 57); Dzεo

−1

∼ 0.35 V Å−1. The actual, dielectrically screened field Ez

= E0
z (0, 0) − Pzε

−1
o � E0

z (0, 0). Here E0
z (0, 0) = Dzεo

−1 and
Pz is the medium polarization density along z direction. Since
Ez is not known before the actual computation,58 Dz is used
as input quantity. In this work we estimate the actual (di-
electrically screened) field strength Ez(z) from the orienta-
tional polarization of water in the direction of the field.

FIG. 3. (Top) Time evolution of the total energy of the simulated system
comprised of a field-free or field-exposed confinement surrounded by ∼5
× 103 water molecules during NVE simulation. Blue line: no field, green:
electric displacement field Dz = 0.031 C m−2 with smooth truncation, red:
electric displacement field Dz = 0.031 C m−2 with abrupt truncation. (Bot-
tom) Energy drift under abruptly discontinued field as a function of the
strength of the electric displacement field Dz from NVE simulation (circles).
Dashed line: quadratic fit of simulation results.

FIG. 4. Average cosine of the angle between water-molecule dipoles and the
direction of the field in the confinement. Blue line: spontaneous polarization
of water along z direction (normal to confinement walls) in the absence of
external field and red line: at electric displacement field Dz = 0.031 C m−2.

Fig. 4 illustrates the profile of cos θ z = 〈μz〉/|μ| across the
confinement in the absence (blue curve) or presence of exter-
nal field. 〈μz〉 is the average z component of molecular dipoles
in z direction, normal to the confinement plates. Nonzero 〈μz〉
in the field-free system reflects spontaneous polarization of
interfacial water59–62 optimizing hydrogen bonding59, 60 and
dipole/wall image56, 63 interaction. It has been established that
cos θ z in water follows the Langevin-Debye relation cos θ z

∼ L(|Eμ|/kT) where L(x) = coth(x) – x−1 and k is the Boltz-
mann constant.5, 64, 65 Fig. 5 shows cos θ z as a function of
total field Ez from our simulations in bulk water with 3D
Ewald sums and conducting boundary conditions. Using these
data and the simulated profiles cos θ z(z) in the confinement
(Fig. 4), we estimate the effective field Ez(z) as the field-
increment corresponding to the change in cos θ z in Fig. 5 from
the confinement value in the absence of the field, cos θ z(z,0),
to its value under the imposed field Dz, cos θ z(z,Dz) (Fig. 4).
The resulting profile Ez(z) is illustrated in Fig. 6. The aver-
age field across the aqueous slab, Ez ≤ 0.02 V Å−1, is over
an order of magnitude weaker than the unscreened input field
Dzεo

−1 suggesting the slab average of the inverse dielectric

response function66 along z axis, ε−1
z , of ≈ 15−1(1 ± 20%).

The comparatively high value of ε−1
z , associated with the

FIG. 5. Average cosine of the angle between molecular dipoles and the di-
rection of the field in bulk water as a function of the actual field strength
E = |E|.
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FIG. 6. Profile of the average strength of the dielectrically screened field
Ez across a 12 Å wide aqueous confinement at electric displacement field
Dz = 0.031 C m−2 (Dzεo

−1 = 0.35 V Å−1).

proximity of the low permittivity interfacial regions, agrees
well with previous estimates for ion channels of comparable
width.1 The electric-field profile Ez(z), Fig. 6, is consistent
with the oscillatory dielectric response profile, ε−1

z (z), deter-
mined in a recent study of interfacial permittivity at similar
conditions.66

The time evolution of the total energies of both the field-
free system (blue) and system S (smoothly truncated field,
green) in Fig. 3 (top) show identical, negligibly small drift
of ∼0.06% per ns, which is apparently not related to system’s
electrostatics. The two curves essentially overlap because the
average molecule/field interaction 〈UE〉 ∼ −μEz〈cos θ z〉 of
∼−0.066 kT is comparatively small and affects only about
7% of the molecules in the box. The curve describing sys-
tem A (red), on the other hand, shows a drift of ∼2% of to-
tal energy per ns. The rise in the energy reflects the energy
increase of the order of −〈UE〉 for each escape of a (partially
aligned) molecule from the field. The increase takes place be-
cause continuous molecular equations of motion cannot ac-
count for the impulse of force on the escaping molecules and
concomitant kinetic energy reduction. For molecules entering
the confinement, the effect is less significant as the environ-
ment molecules have near random orientations, i.e., 〈cos θ z〉
close to zero except for a small fraction of molecules recross-
ing into the confinement before they had a chance to random-

ize their orientation; typical relaxation time for this process is
between 5 and 8 ps.62, 67–69 The growth of the energy drift with
the field strength shown in Fig. 3 (bottom) conforms to this
picture. For present fields, the alignment of water molecules
grows essentially linearly with the field, 〈cos θ z〉 ∝ |Ez|13, 64

(see also Fig. 5) and 〈UE〉 ∝ E2
z . According to Fig. 3 (bot-

tom), the energy drift increases with the square of the applied
field. This confirms that the drift is proportional to 〈UE〉, and
the proportionality factor is indicative of the rate of molecular
escapes from the region under the field. The negligible energy
drift in smoothly truncated fields (system S) conforms to the
above interpretation.

B. Water structure and barostat function

In contrast to straightforward MD integration in the sys-
tem with smooth electric field cutoff (system S), a rigor-
ous integration in the presence of discontinuous field (sys-
tem A) would require an inclusion of the impulse term for
molecules crossing the discontinuity plane. By facilitating the
molecules’ escape from the field, the omission of this term
can bias the partitioning of water between the bulk reservoir
and the confinement, and can affect the performance of the
barostat intended to maintain constant chemical potential of
water in the reservoir and system as a whole. We evaluate the
magnitude of both effects by comparing the results for water
structure in systems with no field (Fig. 7) and those in which
the confinement is spanned by the applied field, smoothly (S)
or abruptly (A) truncated at the confinement border (Figs. 8
and 9). In each of the three systems, ambient (near zero) pres-
sure was maintained by two different methods. We used pres-
sure buffering method based on vapor/liquid coexistence26, 27

in NVE ensemble, or conventional Nose-Hoover barostat25 in
NPT simulations. Density profiles of water, ρH2O(z), for both
types of imposed conditions are presented in Fig. 8 for Dz

= 0.031 C m−2 and in Fig. 9 for Dz = 0.062 C m−2. Av-
erage densities inside the confinement, and in the reservoir,
are compared in Table I. Density profiles and associated den-
sity averages for field free systems as well as systems with
smoothly truncated confinement field show no differences be-
tween the two ensemble types, each relying on a different
method of barostating. Introduction of electric field inside the

FIG. 7. Water density profiles in the central portion (r ≤ rin) of the reservoir/confinement system in the absence of external field. (a) NVE simulation with
pressure-buffer barostating. See caption of Fig. 1. (b) NPT simulation using Nose-Hoover barostat/thermostat.
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FIG. 8. Water density profiles in the central portion of the reservoir/confinement system at electric displacement field across the confinement Dz = 0.031 C
m−2 with smoothly (a) and (b) or abruptly truncated field (c) and (d). Left: NVE simulation with pressure-buffer barostating. Right: NPT simulation using
Nose-Hoover barostat/thermostat. Consistent with Fig. 1, blue and yellow colors denote field-free and field-exposed regions, respectively.

confinement consistently increases local density. This behav-
ior conforms to classical electrostriction demonstrated in pre-
vious MD1 and Monte Carlo studies.4, 6, 7, 13 An opposite trend
has been reported in an earlier MD study based on discontin-
uous field truncation with no force impulse correction.5 Us-

ing the same approximation, our results for abruptly truncated
field (system A) in Figs. 8 and 9 show a density reduction,
which intensifies with increasing strength of the applied field.
As already pointed out, we attribute the reduction to the ne-
glect of the force impulse countering the molecules’ attempts

FIG. 9. Water density profiles in the central portion of the reservoir/confinement system at electric displacement field Dz = 0.062 C m−2 with smooth (a) and
(b) or abrupt (c) truncation at the confinement border. Systems (a) and (c): NVE simulation with pressure-buffer barostating. System (b): NPT simulation using
Nose-Hoover barostat/thermostat. Blue and yellow colors denote field-free and field-exposed regions.
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TABLE I. Average densities of water in the field-exposed confinement, ρc
H2O , (relative to the field-free confinement), and in the field-free bath at ambient

conditions, ρb
H2O, from NVE simulations with pressure buffering, or NPT simulations with Nose-Hoover barostat/thermostat. Results for smoothly (system

S) and abruptly (system A) truncated fields across the confinement are given for field strengths corresponding to electric displacement fields Dz = 0.031 and
0.062 C m−2.

System type NVE NPT

Dz (C m−2) Field truncation
ρc
H2O

(Dz)

ρc
H2O

(0) ρb
H2O (g cm−3)

ρc
H2O

(Dz)

ρc
H2O

(0) ρb
H2O (g cm−3)

0 . . . 1.00 0.98 ± 0.03 1.00 0.99 ± 0.03
0.031 Smooth (S) 1.03 ± 0.01 0.99 ± 0.03 1.04 ± 0.02 0.99 ± 0.03
0.062 Smooth (S) 1.08 ± 0.02 0.99 ± 0.03 1.09 ± 0.02 0.98 ± 0.03
0.031 Abrupt (A) 0.95 ± 0.02 0.99 ± 0.03 0.99 ± 0.02 1.06 ± 0.03
0.062 Abrupt (A) 0.90 ± 0.02 0.97 ± 0.03 0.92 ± 0.07 1.12 ± 0.03

to escape from the field-exposed region. In view of the com-
plications associated with the incorporation of the rigorous
discontinuous MD algorithm54 in a system where long-ranged
forces are present simultaneously, the smooth truncation of
the electric field represents the preferable alternative.

Our comparison between two barostating methods also
unveils a considerable barostat dependence of water structure
in the presence of the abruptly truncated field. The differ-
ences, attributed to the omission of appropriate discontinuity
pressure-correction25 in system A include a density reduction
inside the confinement and increase outside of it. The differ-
ences increase with the strength of the field. In the strongest
field we consider, Dz = 0.062 C m−2, system A displays the
onset of liquid/vapor separation in the confined phase. In this
case, large density fluctuations are present in both, the con-
fined and bulk regions, and we could not obtain statistically
meaningful density profiles for this system.

C. System variations

In all the above examples, we used the decay function de-
scribed by Eq. (5). To examine possible influence of specific
form of the field decay, a part of our calculations was repeated
using a different form of the decay function f(r) inside the
interval rin ≤ r ≤ rout,

f (rs) = exp

(
− r2

s

1 − r2
s

)
, rs = r − rin

rout − rin

. (10)

Despite a considerable difference between decay functions
in Eqs. (5) and (10), neither this change nor moderate vari-
ations in the length of the decay interval (rout − rin) produced
noteworthy differences in obtained structures outside the in-
terval itself. Similarly, energy conservation remains excellent
regardless of the above modification in the form of smooth
truncation. Insensitivity on the form of f(r) has been recently
confirmed in calculations where neat water was replaced by
1–2 M NaCl solution.70

Density profiles in Figs. 7 and 8, as well as the related
results from Ref. 5, indicate the presence of water-water cor-
relations across the confinement plates. To examine the im-
portance of these correlations on the behavior of the con-
fined phase, we repeated the calculations described in Fig. 7
using essentially identical system parameters, but for
markedly thicker confinement walls. These walls were com-

prised of model butylated graphane, whose wetting proper-
ties we described in previous works.50, 51 The separation be-
tween opposite hydration layers across a graphane plate was
close to 1.5 nm, which is more than double the distance in
the case of graphene. Nonetheless, all qualitative features of
graphene system and its response to the applied field, includ-
ing the distinction between smooth and abrupt field trunca-
tions remained unchanged, confirming the observed behavior
to be robust with respect to the details of model system.

IV. CONCLUDING REMARKS

We use MD simulations to examine effects of electric
field in aqueous confinements open to an unperturbed envi-
ronment at ambient conditions. In the confinement interior,
the direction of the applied field is normal to confinement
walls. The decay of the applied field at the confinement bor-
der, however, implies the existence of a nonvanishing compo-
nent of local field in lateral direction. Depending on the orien-
tation of water molecule at the confinement border, this field
can attract a dipolar molecule into or repel it away from the
field-exposed region. Because of biased orientations of con-
fined molecules, the net effect is attractive. The effect can be
readily captured in MD simulation in the case of smooth field
truncation but would require the incorporation of the discon-
tinuous MD algorithm54 in systems with abrupt field decay.
The omission of the lateral impulse term, required in rigorous
MD integration, manifests in the energy drift of an isolated
system and leads to an underestimate of liquid density in the
field-exposed region. Calculated pressure and Nose-Hoover
barostat can also be affected. With proper treatment of the
field-decay region at the confinement border, the imposition
of external field across the confinement in equilibrium with
a field-free aqueous reservoir consistently results in density
increase in analogy with electrostriction in bulk water. A con-
tradictory observation5 in the same type of system may be
explained by the neglect of the lateral field effect discussed
above.

The field-induced density12, 15 and critical point12 de-
pression observed in MD simulations, both in the bulk and
confined aqueous phases, on the other hand, pertain to dif-
ferent imposed conditions. The key differences include the
variation of the chemical potential with the field strength,
the absence of a field-free reservoir supplying additional
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molecules, and the extension of uniform electric displacement
field across the entire system under consideration. The critical
role of imposed conditions on the magnitude and sign of the
field-induced density changes has been highlighted in recent
works.13, 14
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