153 research outputs found

    Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation

    Get PDF
    BACKGROUND: During excessive pressure or volume overload, cardiac cells are subjected to increased mechanical stress (MS). We set out to investigate how the stress response of cardiac cells to MS can be compared to genotoxic stresses induced by DNA damaging agents. We chose for this purpose to use ionising radiation (IR), which during mediastinal radiotherapy can result in cardiac tissue remodelling and diminished heart function, and ultraviolet radiation (UV) that in contrast to IR induces high concentrations of DNA replication- and transcription-blocking lesions. RESULTS: Cultures enriched for neonatal rat cardiac myocytes (CM) or fibroblasts were subjected to any one of the three stressors. Affymetrix microarrays, analysed with Linear Modelling on Probe Level, were used to determine gene expression patterns at 24 hours after (the start of) treatment. The numbers of differentially expressed genes after UV were considerably higher than after IR or MS. Remarkably, after all three stressors the predominant gene expression response in CM-enriched fractions was up-regulation, while in fibroblasts genes were more frequently down-regulated. To investigate the activation or repression of specific cellular pathways, genes present on the array were assigned to 25 groups, based on their biological function. As an example, in the group of cholesterol biosynthesis a significant proportion of genes was up-regulated in CM-enriched fractions after MS, but down-regulated after IR or UV. CONCLUSION: Gene expression responses after the types of cellular stress investigated (MS, IR or UV) have a high stressor and cell type specificity

    Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for gene expression studies. However, the stress of the FACS process could change normal gene expression profiles. RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.</p> <p>Findings</p> <p>To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP, DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are altered by RNAlater treatment.</p> <p>Conclusions</p> <p>When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of the cells before considering its use in cell sorting.</p

    H2FPEF score predicts atherosclerosis presence in patients with systemic connective tissue disease

    Get PDF
    Background: Cardiovascular diseases are common cause of morbidity and mortality in patients with systemic connective tissue diseases (SCTD) due to accelerated atherosclerosis which couldn't be explained by traditional risk factors (CVDRF). Hypothesis: We hypothesized that recently developed score predicting probability of heart failure with preserved ejection fraction (H2FPEF), as well as a measure of right ventricular-pulmonary vasculature coupling [tricuspid annular plane systolic excursion (TAPSE)/pulmonary artery systolic pressure (PASP) ratio], are predictive of atherosclerosis in SCTD. Methods: 203 patients (178 females) diagnosed with SCTD underwent standard and stress-echocardiography (SE) with TAPSE/PASP and left ventricular (LV) diastolic filling pressure (E/e') measurements, carotid ultrasound and computed tomographic coronary angiography. Patients who were SE positive for ischemia underwent coronary angiography (34/203). The H2FPEF score was calculated according to age, body mass index, presence of atrial fibrillation, β‰₯2 antihypertensives, E/e' and PASP. Results: Mean LV ejection fraction was 66.3 Β± 7.1%. Atherosclerosis was present in 150/203 patients according to: 1) intima-media thickness>0.9 mm; and 2) Agatstone score > 300 or Syntax score β‰₯ 1. On binary logistic regression analysis, including CVDRF prevalence, echocardiographic parameters and H2FPEF score, only H2FPEF score remained significant for the prediction of atherosclerosis presence (Ο‡2 = 19.3, HR 2.6, CI 1.5-4.3, p < 0.001), and resting TAPSE/PASP for the prediction of a SE positive for ischemia (Ο‡2 = 10.4, HR 0.01, CI = 0.01-0.22, p = 0.004). On ROC analysis, the optimal threshold value for identifying patients with atherosclerosis was a H2FPEF score β‰₯2 (Sn 60.4%, Sp 69.4%, area 0.67, SE = 0.05, p < 0.001). Conclusions: H2FPEF score and resting TAPSE/PASP demonstrated clinical value for an atherosclerosis diagnosis in patients diagnosed with SCTD

    Understanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control

    Get PDF
    BACKGROUND: While neural systems are known to respond to chemical and electrical stimulation, the effect of mechanics on these highly sensitive cells is still not well understood. The ability to examine the effects of mechanics on these cells is limited by existing approaches, although their overall response is intimately tied to cell-matrix interactions. Here, we offer a novel method, which we used to investigate stretch-activated mechanotransduction on nerve terminals of sensory neurons through an elastomeric interface. METHODOLOGY/PRINCIPAL FINDINGS: To apply mechanical force on neurites, we cultured dorsal root ganglion neurons on an elastic substrate, polydimethylsiloxane (PDMS), coated with extracellular matrices (ECM). We then implemented a controlled indentation scheme using a glass pipette to mechanically stimulate individual neurites that were adjacent to the pipette. We used whole-cell patch clamping to record the stretch-activated action potentials on the soma of the single neurites to determine the mechanotransduction-based response. When we imposed specific mechanical force through the ECM, we noted a significant neuronal action potential response. Furthermore, because the mechanotransduction cascade is known to be directly affected by the cytoskeleton, we investigated the cell structure and its effects. When we disrupted microtubules and actin filaments with nocodozale or cytochalasin-D, respectively, the mechanically induced action potential was abrogated. In contrast, when using blockers of channels such as TRP, ASIC, and stretch-activated channels while mechanically stimulating the cells, we observed almost no change in action potential signalling when compared with mechanical activation of unmodified cells. CONCLUSIONS/SIGNIFICANCE: These results suggest that sensory nerve terminals have a specific mechanosensitive response that is related to cell architecture

    Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus

    Get PDF
    Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a high-fat diet. In response to fasting, HDAC3 and βˆ’4 expression levels increased while HDAC10 and βˆ’11 levels decreased. Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and βˆ’8. Moreover, fasting decreased the number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial hypothalamus under different metabolic states

    Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat

    Get PDF
    Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health
    • …
    corecore