12 research outputs found

    Pilot Study of Delayed ICOS/ICOS-L Blockade With alphaCD40 to Modulate Pathogenic Alloimmunity in a Primate Cardiac Allograft Model

    Get PDF
    Background: Inducible costimulator (ICOS) is rapidly upregulated with T-cell stimulation and may represent an escape pathway for T-cell costimulation in the setting of CD40/CD154 costimulation blockade. Induction treatment exhibited no efficacy in a primate renal allograft model, but rodent transplant models suggest that the addition of delayed ICOS/ICOS-L blockade may prolong allograft survival and prevent chronic rejection. Here, we ask whether ICOS-Ig treatment, timed to anticipate ICOS upregulation, prolongs NHP cardiac allograft survival or attenuates pathogenic alloimmunity. Methods: Cynomolgus monkey heterotopic cardiac allograft recipients were treated with alphaCD40 (2C10R4, d0-90) either alone or with the addition of delayed ICOS-Ig (d63-110). Results: Median allograft survival was similar between ICOS-Ig + alphaCD40 (120 days, 120-125 days) and alphaCD40 (124 days, 89-178 days) treated animals, and delayed ICOS-Ig treatment did not prevent allograft rejection in animals with complete CD40 receptor coverage. Although CD4(+) TEM cells were decreased in peripheral blood (115 +/- 24) and mLNs (49 +/- 1.9%) during ICOS-Ig treatment compared with monotherapy (214 +/- 27%, P = 0.01; 72 +/- 9.9%, P = 0.01, respectively), acute and chronic rejection scores and kinetics of alloAb elaboration were similar between groups. Conclusions: Delayed ICOS-Ig treatment with the reagent tested is probably ineffective in modulating pathogenic primate alloimmunity in this model

    Blood Cardioplegia Induction, Perfusion Storage and Graft Dysfunction in Cardiac Xenotransplantation

    Get PDF
    BackgroundPerioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia.MethodsBaboons were weight matched to genetically engineered swine heart donors. Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the addition of 25% by volume of donor whole blood. Continuous perfusion was performed using an XVIVO © Perfusion system with XHS to which baboon RBCs were added.ResultsPCXD was observed in 5/8 that were preserved with crystalloid cardioplegia followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively. Traditional preservation resulted in more inotropic support and higher average peak serum lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous perfusion 3.5±1.5 mmol/L.ConclusionBlood cardioplegia induction, alone or followed by XHS perfusion storage, reduced the incidence of PCXD and improved graft function and survival, relative to traditional crystalloid cardioplegia-slush storage alone

    Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G‑Protein Coupled Receptors

    No full text
    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β<sub>2</sub>-adreneric (β<sub>2</sub>AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β<sub>2</sub>AR LBP were used in virtual screening to identify high efficacy agonists targeting β<sub>2</sub>AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents

    Preemptive CD20+ B cell Depletion Attenuates Cardiac Allograft Vasculopathy in CD154-Treated Monkeys.

    No full text
    BACKGROUND: Anti-CD154 monotherapy is associated with anti-donor alloantibody (Ab) elaboration, cardiac allograft vasculopathy (CAV), and allograft failure in preclinical primate cell and organ transplant models. In the context of calcineurin inhibition (CNI), these pathogenic phenomena are delayed by preemptive “induction” B-cell depletion. METHODS: IDEC-131(αCD154)-treated cynomolgus monkey heart allograft recipients were given peritransplant rituximab (αCD20) alone or with rabbit anti-human thymocyte globulin (rATG). RESULTS: Relative to previously reported reference groups, αCD20 significantly prolonged survival, delayed Ab detection, and attenuated CAV within 3 months in αCD154-treated recipients (αCD154+αCD20 graft median survival time (MST) >90d, n=7, vs 28d for αCD154 alone (IDEC-131), n=21; p=0.05). Addition of rATG to αCD154 (n=6) or αCD154+αCD20 (n=10) improved graft protection from graft rejection and failure during treatment, but was associated with significant morbidity in 8 of 16 recipients (6 infections, 2 drug-related complications). In αCD20-treated animals, detection of anti-donor Ab and relatively severe CAV were anticipated by appearance of CD20(+) cells (>1% of lymphocytes) in peripheral blood, and were associated with low αCD154 trough levels (below 100 µg/ml). CONCLUSIONS: These observations support the hypothesis that efficient preemptive ‘induction’ CD20(+) B-cell depletion consistently modulates pathogenic alloimmunity and attenuates CAV in this translational model, extending our prior findings with CNIs to the context of CD154 blockade

    Pilot Study of Delayed ICOS/ICOS-L Blockade With αCD40 to Modulate Pathogenic Alloimmunity in a Primate Cardiac Allograft Model

    No full text
    Background. Inducible costimulator (ICOS) is rapidly upregulated with T-cell stimulation and may represent an escape pathway for T-cell costimulation in the setting of CD40/CD154 costimulation blockade. Induction treatment exhibited no efficacy in a primate renal allograft model, but rodent transplant models suggest that the addition of delayed ICOS/ICOS-L blockade may prolong allograft survival and prevent chronic rejection. Here, we ask whether ICOS-Ig treatment, timed to anticipate ICOS upregulation, prolongs NHP cardiac allograft survival or attenuates pathogenic alloimmunity. Methods. Cynomolgus monkey heterotopic cardiac allograft recipients were treated with αCD40 (2C10R4, d0-90) either alone or with the addition of delayed ICOS-Ig (d63-110). Results. Median allograft survival was similar between ICOS-Ig + αCD40 (120 days, 120-125 days) and αCD40 (124 days, 89-178 days) treated animals, and delayed ICOS-Ig treatment did not prevent allograft rejection in animals with complete CD40 receptor coverage. Although CD4+ TEM cells were decreased in peripheral blood (115 ± 24) and mLNs (49 ± 1.9%) during ICOS-Ig treatment compared with monotherapy (214 ± 27%, P = 0.01; 72 ± 9.9%, P = 0.01, respectively), acute and chronic rejection scores and kinetics of alloAb elaboration were similar between groups. Conclusions. Delayed ICOS-Ig treatment with the reagent tested is probably ineffective in modulating pathogenic primate alloimmunity in this model
    corecore