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Background: Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly
developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic
modifications to increase compatibility of the heart. We report on the incidence of PCXD using
static preservation in ice slush following crystalloid or blood-based cardioplegia versus
continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia.

Methods: Baboons were weight matched to genetically engineered swine heart donors.
Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the
addition of 25% by volume of donor whole blood. Continuous perfusion was performed
using an XVIVO © Perfusion system with XHS to which baboon RBCs were added.

Results: PCXD was observed in 5/8 that were preserved with crystalloid cardioplegia
followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia
was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts
that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival
averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days
and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively.
Traditional preservation resulted in more inotropic support and higher average peak serum
lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous
perfusion 3.5±1.5 mmol/L.

Conclusion: Blood cardioplegia induction, alone or followed by XHS perfusion storage,
reduced the incidence of PCXD and improved graft function and survival, relative to
traditional crystalloid cardioplegia-slush storage alone.

Keywords: xenotransplantation, graft dysfunction, cardiac xenotransplantation, cardiac preservation, heart
transplant, heart failure, ventricular assist device (VAD)
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INTRODUCTION

Heart transplantation is the optimal treatment of end-stage
heart failure after failure of maximal medical therapy. However,
the shortage of donor hearts restricts its utilization. At any
given time, 3,000-4,000 people are waiting for a heart transplant
in the United States (1). Xenotransplantation of genetically
engineered porcine hearts for human transplantation has been
proposed as an alternative approach. However, perioperative
cardiac xenograft dysfunction (PCXD) has been observed in 40-
60% of orthotopic cardiac xenotransplants and is considered a
significant barrier to translational use in humans (2). PCXD is
characterized as graft failure within 24-48 hours of
transplantation that is independent of immune organ
rejection. It has been considered to be associated with
i schemia-reper fus ion (I /R) in jury and a sys temic
inflammatory response to xenotransplantation (3–6).
Mitigating PCXD and inflammation has resulted in up to 6
months of survival in pig-to-baboon cardiac xenotransplants,
using a non-ischemic continuous perfusion preservation
technique (NICP) and anti-inflammatory agents, among
other adjuncts (7). NICP prevents I/R injury and has been
shown to ease removal from cardiopulmonary bypass and
reduce the need for catecholamine support (3). However,
NICP is expensive and the components of the oxygenated
perfusate are complex with components of unknown
significance (8).
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In allotransplantation, traditional static preservation is well
tolerated and has been used since the inception of heart
transplantation, resulting in primary graft dysfunction (PGD)
in 8-10% (9, 10). For reasons that are not entirely clear,
traditional preservation techniques are not sufficient to prevent
PGD during cardiac xenotransplantation. In contrast to
traditional static preservation (i.e., slush), NICP strategy
utilizes a hyperoncotic cardioplegic perfusate containing
packed red blood cells, human serum albumin (HSA), dextran
40, inotropes, hormones, antibiotics, and cocaine to minimize
ischemia-reperfusion phenomena and prevent myocardial
edema (8).

We aimed to determine whether blood cardioplegia with
freshly oxygenated donor blood before donor cardiectomy,
followed by storage on ice, could similarly prevent PCXD and
increase cardiac xenotransplantation recipient survival
compared to NICP. This method of minimally ischemic
cardiac preserva t ion prov ides a potent ia l ly more
straightforward and cost-effective alternative to the NICP
preservation technique.
METHODS

Animal Model
Genetically engineered German landrace pigs were of either
sex, 15-30 kg, of non-AB (O) blood type, and cytomegalovirus
GRAPHICAL ABSTRACT |
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(CMV)-negative. Donor swine were provided by Revivicor,
Inc. and were all a-1,3-galactosyltransferase gene knock-out
(GTKO) with additional human transgene expression
(Table 2), depending on organ availability. The porcine
hearts were transplanted into similarly sized Papio albus
baboons of either sex, screened for the absence of select
pathogens. All animals were used in compliance with
“Guide for the Care and Use of Laboratory Animals”
recommended by the National Institutes of Health and the
University of Maryland Institutional Animal Care and Use
Committee (IACUC).

Procedures
Traditional Cardioplegia Induction, With
Static Preservation
After ligating the superior and inferior vena cava, either
Custodial crystalloid cardioplegia or Del Nido solution without
blood was administered through the ascending aorta at a volume
of 30cc/kg. The heart was then procured and stored on ice (slush)
until transplantation.

Crystalloid Blood Cardioplegia, With
Static Preservation
Blood cardioplegia induction included del Nido cardioplegia
solution (containing Plasma-Lyte A, Mannitol 20%, MgSO4

50%, NaHCO3 8.4%, KCl, Lidocaine 1%) with fresh donor
blood collected just prior to administering cardioplegia at 25%
of total cardioplegia volume (11). Just as traditional means, the
heart was then stored on ice until transplantation.

Non-Ischemic Continuous Perfusion (NICP)
Blood cardioplegia induction included XHS cardioplegia with
fresh donor blood collected just prior to administering
cardioplegia at 25% of total cardioplegia volume (similar to
above). After procuring the swine heart, it was connected to
the XVIVO© perfusion system (XVIVO© Perfusion,
Gothenburg, Sweden) and continuously perfused with
oxygenated XHS at 8°C with pressure maintained at 20 mmHg
at a physiological pH (7.2-7.6) until transplantation (8). An
XVIVO© dual lumen cannula (central inflow, axially oriented
outflow and quick connects for machine circuit connection) was
placed in the transected ascending aorta, with the tip of the
cannula in the root, just above the aortic valve. Care was taken to
prevent aortic valve incompetence as a result of cannula
placement. The mitral valve was made incompetent by
transvalvular placement of silicon tubing and sutured to the
left atrium, in order to prevent LV distention.

Recipient Immunosuppression
An ant i -CD40 monoclona l ant ibody (mAb)-based
immunosuppression regimen was used for all recipients of this
study. This has been extensively described elsewhere (12). Briefly,
induction was performed with anti-CD20 mAb, thymoglobulin,
cobra venom factor, and anti-CD40 mAb, and maintenance
consistent of anti-CD40 mAb, mycophenolate mofetil (MMF
or Cellcept), and steroids.
Frontiers in Immunology | www.frontiersin.org 3
Resuscitation
Standard resuscitation with crystalloid, colloid, inotropes,
pressers and blood products was performed in order to
maintain MAP >60, Hgb >8.0, adequate oxygenation/
ventilation, acid/base homeostasis and adequate organ
perfusion in the immediate postoperative period. Critical Care
nurses and physicians provided ICU level monitoring and
management for the first 48-72 hours postoperatively.

Anesthesia
Details of anesthesia induction and maintenance and rationale
for agent selection has been detailed previously (13). Briefly, the
donor is sedated with 10mg/kg of Ketamine and 2mg/kg of
xylazine intramuscularly and transferred to the operating
room. The recipient is similarly sedated with 10mg/kg
of intravascular ketamine through a tunneled central line
and brought to the operating room. Both donor and
recipients are intubated and induced with isofluorene (1-
1.5%) for a goal minimal alveolar concentration of 1.0-1.2.
Analgesia and paralysis are maintained with fentanyl and
succinylcholine, respectively.

Euthanasia
Recipients were euthanized upon determining that standard
resuscitation would not lead to meaningful recovery of
xenograft function or recipient physiologic derangements such
as acidosis or hypoxemia. Additional euthanasia criteria were for
intractable arrythmias.

Objective Quantification of Support and
PCXD Postoperatively
In order to objectively quantify the amount of support required
postoperatively, inotrope and vasopressor support were
quantified on a 1-5 scale as depicted in Table 1. Support was
quantified at the time of weaning cardiopulmonary bypass
(CPB), 1 hour, 12 hours and 24 hours after weaning CPB and
the summation of each time point was tabulated. PCXD was
defined as graft failure/intractable arrythmia leading to
euthanasia prior to 48 hours after transplantation.

Statistical Analysis
All statistical analyses, including Kaplan Meyer curves, ANOVA
and t-tests were performed on Graphpad Prism version 9 (San
Diego, CA).
RESULTS

A summary of the results of the study are shown in Table 2.
There were no significant differences between donor and
recipient weights, cross clamp times, total ischemia times
and cardiopulmonary bypass times between traditional
crystalloid cardioplegia, blood cardioplegia and NICP
groups (Table 3). Survival for recipients with donor
xenografts that underwent traditional cardioplegia induction
June 2021 | Volume 12 | Article 667093
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and storage in slush ranged from 3 to 26 hours, with an
average of 17 hours. Blood cardioplegia induction and storage
in slush resulted in a drastic improvement in xenograft
survival with an average of 275 hours (11.45 days), with a
maximum survival of 29 days (Figure 1) (p=0.0319).
Similarly, NICP extended survival time to an average of
360.6 hours (15.03 days), with a maximum survival of 57 days
(Figure 1). PCXD (i.e., graft failure, without histiologic/
immunologic evidence of rejection, within 48 hours of
xenotransplant) was overcome in 2 out of 3 with blood
cardioplegia/slush storage and 4 out of 5 NICP storage, respectively.

NICP and blood cardioplegia resulted in significantly less
support (Figure 2). While the average support score for
traditional preservation was 6.4, the scores for blood
cardioplegia induction and NICP were 3.0 and 2.0,
respectively (p= 0.0294 and 0.0005, respectively) (Figure
2A). When support scores are further stratified by both
inotropy and vasopressor requirements, there was a trend
toward less inotropy requirements in blood cardioplegia and
NICP preservation strategies, compared to traditional
crystalloid cardioplegia but it did not reach statistical
significance (Figure 2B). There was a statistically significant
reduction in vasopressor requirement in NICP compared to
blood cardioplegia and traditional preservation (p=0.0117)
(Figure 2C).

Recipients with traditionally preserved hearts average
higher maximum lactate (14.3 mmol/L) and base deficit
(12.5 mmol/L) compared to blood cardioplegia and NICP
(Figure 3). Recipients that underwent OHTx utilizing blood
cardioplegia induction followed by slush preservation
strategies resulted in an average maximum lactate and base
deficit levels of 3.6 mmol/L and 4.3 mmol/L, respectively
(p=0.0187, p=0.0123, respectively compared to crystalloid
cardioplegia). NICP resulted in similar average maximum
lactate and base deficit levels of 3.5 mmol/L and 3.9 mmol/L,
respectively (p=0.0001, p=0.0005, respectively). While
differences in pH were not statistically significant, the
differences are clinically significant.
DISCUSSION

This study confirms that traditional static preservation using cold
cardioplegic solution followed by storage on ice results in poor
Frontiers in Immunology | www.frontiersin.org 4
xenograft survival. The observed benefit in this study with the use of
alternative approaches to cardiac xenograft preservation while not
conclusive, is certainly hypothesis-generating. The issue may lie in
cardiac xenografts’ increased response to ischemia-reperfusion
injury, as demonstrated by improved outcomes in this study by
employing progressive levels of cardiac preservation with
oxygenated blood. Notably, Längin, et al. has demonstrated
significantly depressed systolic function leading to early graft
failure when traditional cardioplegia was employed, compared to
NICP (6). In this study, the potential merit of blood cardioplegia for
induction and preservation of cardiac xenografts to overcome
PCXD as a less costly and cumbersome alternative to NICP
is discussed.

There is literature to support our observations. It is known that
during solid organ procurement, preservation and subsequent
reperfusion result in oxygen radical formation, edema,
microvascular injury, and compromised microcapillary circulation
(14–17). The underlying mechanism is likely two-fold: a continued
ischemic phenomenon, despite reperfusion, and a paradoxical
progression of damage due to the reperfusion of ischemic areas
(i.e., ischemia-reperfusion injury). There are definitive multifocal,
patchy ischemic areas that result upon reperfusion of ischemic
striated muscle due to either constriction of afferent arterioles,
obstruction of the capillaries themselves or interstitial edema (18).
Secondly, reperfusion injury occurs upon restoration of flow in
ischemic areas due to oxygen free radical formation from NADPH
and xanthine oxidase, causing endothelial cell damage. Most
relevant to xenotransplantation, oxidative stress also causes
leukocyte adherence to endothelial cells, activation and further
endothelial damage (19). These mechanisms of graft injury
are largely augmented by recipient inflammation at the
graft endothelium. Since immunological insults of much
higher intensity are seen in cross-species transplantation, the
differences seen in PGD in allotransplantation versus
xenotransplantation can be explained by augmented ischemia-
reperfusion injury by inflammation (16). Perhaps by
minimizing ischemia using either blood cardioplegia induction or
NICP, downstream effects of ischemia reperfusion are reduced.

However, other components of NICP perfusate (i.e., that
minimize ischemia) should not be discounted. They further
support the likely mechanisms of primary graft failure in cardiac
xenotransplantation or PCXD. Other than oxygenated red blood
cells, the primary components of NICP perfusate are human serum
albumin (HSA) and dextran 40 (8). Serum albumin serves to
TABLE 1 | Objective Quantification of Support Postoperatively-ionotropic and vasopressor support required in the first 24 hours after transplantation was quantified by
the following 1-5 scale, with additive scores for each drug used for 0, 1, 12 and 24 hour time points.

Support Scale 1 2 3 4 5

Inotropes:
Epinephrine (mcg/kg/min) 0.01-0.05 0.06-0.01 0.11-0.15 0.16-0.20 > 0.20
Dobutamine (mcg/kg/min) 2.5-6.9 7.0-11.4 11.5-16.9 16.0-20.4 > 20.4
Milrinone (mcg/kg/min) 0.125-0.24 0.250-0.374 0.375-0.49 0.5-0.624 > 0.624
Vasopressors:
Norepinephrine (mcg/kg/min) 0.01-0.1 0.11-0.2 0.21-0.3 0.31-0.4 > 0.4
Phenylephrine (mcg/kg/min) 0.1-0.9 1.0-1.9 2.0-2.9 3.0-4.0 > 4.0
Vasopressin (units/min) 0.01 0.02 0.03 0.04 > 0.04
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increase the oncotic pressure intravascularly, abrogating some of the
microcapillary dysfunction, while dextran 40 protects the
endothelial lining from leukocyte interaction (20). To what extent
each component contributes to mitigating further damage by
ischemia-reperfusion is mostly unknown. However, incorporating
HSA and dextran 40 into cardioplegia solution with fresh donor red
blood cells should be the next step in elucidating these mechanisms.
It may be that combining HSA and dextran 40 with blood
cardioplegia induction strategies is equally effective as NICP, but
this has yet to be studied. Moreover, it was observed that there was
significantly less vasopressor requirement in recipients of xenografts
that received NICP, suggesting vasoplegia after transplantation is
reduced. This observation should be interpreted with caution, as the
sample size is limited, but it does provide potential evidence that
NICP mitigates inflammation-induced vasoplegia not seen by other
preservation strategies.

Blood cardioplegia efficacy in overcoming PCXD was quite
remarkable in and of itself and this study may underrepresent its
benefit. The one recipient in the group induced with blood
cardioplegia, followed by slush storage that did not overcome
PCXD had a notably higher cross-clamp time (142 minutes) and
cardiopulmonary bypass time (152 minutes) than the averages of
our institution and was a more technically difficult transplant. This
may have conferred a worse outcome than would have otherwise
been exhibited with standard operating times. Necropsy
demonstrated an unusually large amount of multifocal
contraction band necrosis, characteristic of ischemia-
reperfusion injury.

A notable limitation to this study is in the different genetic
backgrounds of the donor xenografts between groups. This could
lead the reader to believe that these differences could influence
xenograft function, lead to early rejection and influence survival.
Indeed, genetic differences could (and may) have influenced overall
survival, however, this was only a tertiary endpoint of this study.
The primary endpoint of this study was the incidence of transplants
that overcame PCXD, and secondary endpoints included the
amounts of support and metabolic derangements that occurred
within the first 24 hours after transplantation. To that end, all
xenografts contained at least GTKO and expression of one
complement regulatory and thromboregulatory protein (which
are known principle components of genetically engineered grafts
shown to prevent hyperacute reject ion in cardiac
xenotransplantation) (21, 22). Thus, genetic differences of the
xenografts in this study are likely negligible. One exception is in
the NICP group, where a xenograft lacked complement regulatory
proteins and thromboregulatory proteins (“TKO only” xenograft).
However, this also underscores the point regarding genetic
differences in that this graft surpassed PCXD and had minimal
metabolic derangements after transplantation despite the limited
genetic modifications of this xenograft.

Lastly, it should be noted that information gained from this
study may be applicable to allotransplantation. Like
xenotransplantation, PGD is the leading cause of mortality in
patients undergoing heart transplantation (9). Despite advances in
allocation methods, cardiopulmonary bypass, and postoperative
care, the incidence is still around 8-10% (9). Indeed, NICP,
T
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TABLE 3 | Mean survival, descriptive statistics between traditional, blood cardioplegia and NICP.

Preservation Type Traditional (n=8) Blood Cardioplegia (n=3) NICP (n=5) p-value

Survival- hours (days) 16 (0.68) ± 15 274 (11.42) ± 370 361 (15.03) ± 567 p=0.0139
Cross clamp time (minutes) 94 ± 41 80 ± 53 50 ± 14 ns
Total ischemia time (minutes)* 111 ± 51 75 ± 28 166 ± 27 ns
CPB time (minutes) 138 ± 21 115 ± 32 111 ± 16 ns
% Extubated 0.00% 66.70% 100.00% n/a
% Surpassed 48-hour survival 0.00% 66.70% 80.00% n/a
% PCXD 62.5% 33.3% 20.0% n/a
Frontiers in Immunology | www.frontiersin.org
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Mean=mean ± standard deviation. CPB, cardiopulmonary bypass; PCXD, perioperative cardiac xenograft dysfunction. *total ischemia time includes time in XVIVO box for NICP OHTx and thus
only traditional vs. blood cardioplegia means are compared. Otherwise, ANOVA is used to compare all 3 groups with each other for each variable. ns, not significant; n/a, not applicable.
FIGURE 1 | Kaplan Meier curve comparing traditional, blood cardioplegia and NICP preservation methods. P-value calculated by Log-rank (Mantel-Cox) test. *=48
hours (2 days) after transplantation, indicating survival beyond PCXD.
A B

C

FIGURE 2 | (A) Total support required in the first 24 hours after transplantation in crystalloid cardioplegia, blood cardioplegia and NICP groups, based on objective
quantification from Table 1. (B, C) Inotropic and vasopressor scores in the first 24 hours after transplantation between groups. Total scores were calculated as the
summation of all scores for each time point. *p=<0.05, **p<0.005, ***p<0.0005. ns, not significant.
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initially developed for xenotransplantation, has since gained traction
in allotransplantation in a Phase II clinical trial (10). While blood
cardioplegia in the context of coronary artery bypass grafting
(CABG) and aortic root repair has been trialed, results are mixed
and have not been tested in the context of allotransplantation (23).
CONCLUSION

We have shown that both blood cardioplegia induction and NICP
increase survival in cardiac xenotransplantation compared to
traditional static preservation. Blood cardioplegia induction and
NICP show similar prevention of metabolic derangements and
need for support postoperatively, but NICP shows greater incidence
of progression past PCXD compared to blood cardioplegia. However,
with the simple addition of fresh donor blood to traditional
cardioplegia, still shows some merit as demonstrated by a
significant improvement in both progression of PCXD and
survival. Likely, a combination of the properties of red blood cell
containing perfusate used in NICP (namely, HSA and dextran 40)
with freshly oxygenated red blood cells will augment the properties of
blood cardioplegia, decreasing the incidence of PCXD and increasing
survival. Further investigation of albumin and dextran containing
cardioplegia with fresh red blood cells without NICP is currently
underway to determine its efficacy compared with NICP. This may
demonstrate a favorable alternative to NICP in cardiac
xenotransplantation to reduce the incidence of PCXD and increase
survival that is of decreased cost and complexity. That being said,
blood cardioplegia must demonstrate non-inferiority in larger studies
either alone, or in combination with other additives prior to replacing
NICP as a durable alternative in cardiac xenotransplantation.
Frontiers in Immunology | www.frontiersin.org 7
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FIGURE 3 | Peak acid/base derangements as measured by lactate, base deficit and pH between groups. *p=<0.05, **p<0.005, ***p<0.0005. Blue=Crystalloid
Cardioplegia, Red=Blood Cardioplegia, Green=NICP. ns, not significant.
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