590 research outputs found

    Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    Get PDF
    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the frst detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.Comment: Main text with figures, and methods and supplementary informatio

    Mechanical properties of nanotubes of polyelectrolyte multilayers

    Get PDF
    The elastic properties of nanotubes fabricated by layer-by-layer (LbL) assembly of polyelectrolytes in the nanopores of polycarbonate track-etched membranes have been investigated by resonant contact Atomic Force Microscopy (AFM), for nanotube diameters in the range of 100 to 200 nm. The elastic modulus of the nanotubes was computed from the resonance frequencies of a cantilever resting on freely suspended LbL nanotubes. An average value of 115MPa was found in air for Young's modulus of these nanostructures, well below the values reported for dry, flat multilayers, but in the range of values reported for water-swollen flat multilayers. These low values are most probably due to the lower degree of ionic cross-linking of LbL nanotubes and their consequently higher water content in air, resulting from the peculiar mode of growth of nanoconfined polyelectrolyte multilayers

    Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy

    Get PDF
    Carbon nanothreads are a new one-dimensional sp^3-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80–100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp^3-hybridized, with less than 27% sp^2 carbon, most likely associated with partially saturated “degree-4” threads

    Service user and caregiver involvement in mental health system strengthening in low- and middle-income countries: a cross-country qualitative study

    Get PDF
    The aims of this paper are to: (i) explore the experiences of involvement of mental health service users, their caregivers, mental health centre heads and policy makers in mental health system strengthening in three low- and middle-income countries (LMICs) (Ethiopia, Nepal and Nigeria); (ii) analyse the potential benefits and barriers of such involvement; and (iii) identify strategies required to achieve greater service user and caregiver participation. A cross-country qualitative study was conducted, interviewing 83 stakeholders of mental health services. Our analysis showed that service user and caregiver involvement in the health system strengthening process was an alien concept for most participants. They reported very limited access to direct participation. Stigma and poverty were described as the main barriers for involvement. Several strategies were identified by participants to overcome existing hurdles to facilitate service user and caregiver involvement in the mental health system strengthening process, such as support to access treatment, mental health promotion and empowerment of service users. This study suggests that capacity building for service users, and strengthening of user groups would equip them to contribute meaningfully to policy development from informed perspectives. Involvement of service users and their caregivers in mental health decision-making is still in its infancy in LMICs. Effective strategies are required to overcome existing barriers, for example making funding more widely available for Ph.D. studies in participatory research with service users and caregivers to develop, implement and evaluate approaches to involvement that are locally and culturally acceptable in LMICs

    Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Assessing water sources for drinking and irrigation along with community vulnerability, especially in developing and rural regions, is important for reducing risk posed by poor water quality and limited water availability and accessibility. We present a case study of rural mining-agricultural communities in the Lake PoopĂł Basin, one of the poorest regions on the Bolivian Altiplano. Here, relatively low rainfall, high evaporation, salinization and unregulated mining activity have contributed to environmental degradation and water issues, which is a situation facing many Altiplano communities. Social data from 72 households and chemical water quality data from 27 surface water and groundwater sites obtained between August 2013 and July 2014 were used to develop locally relevant vulnerability assessment methodologies and ratings with respect to water availability and quality, and Chemical Water Quality Hazard Ratings to assess water quality status. Levels of natural and mining-related contamination in many waters (CWQHR ≄ 6; 78% of assessed sites) mean that effective remediation would be challenging and require substantial investment. Although waters of fair to good chemical quality (CWQHR ≀ 5; 22% of assessed sites) do exist, treatment may still be required depending on use, and access issues remain problematic. There is a need to comply with water quality legislation, improve and maintain basic water supply and storage infrastructure, build and operate water and wastewater treatment plants, and adequately and safely contain and treat mine waste. This study serves as a framework that could be used elsewhere for assessing and mitigating water contamination and availability affecting vulnerable populations.This project was funded by the University College London (UCL) Institute for Risk and Disaster Reduction and the Catholic Agency for Overseas Development (CAFOD) under the initiative of water risk and its management in Bolivia’s Altiplano development strategy, which was led by Stephen Edwards. The Natural Environment Research Council Probability, Uncertainty and Risk in the Environment grant PA13-010 (risk visualisation and quantification for enhanced disaster risk reduction) to Stephen Edwards informed the approach to and outputs from the project

    Investigation of new modification strategies for PVA membranes to improve their dehydration properties by pervaporation

    Get PDF
    International audienceNovel supported membranes based on polyvinyl alcohol (PVA) were developed using two strategies: first, by the modification of the PVA network, via so-called bulk modification, with the formation of the selective layer accomplished through the introduction of fullerenol and/or poly(allylamine hydrochloride), and second, by the functionalization of the surface with successive depositions of multilayered films of polyelectrolytes, such as poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) on the PVA surface. The membrane surface modifications were characterized by scanning electron microscopy and contact angle measurements. The modified PVA membranes were examined for their dehydration transport properties by the perva-poration of isopropyl alcohol-water (80/20% w/w), which was chosen as a model mixture. Compared with the pristine PVA membrane, the main improvement was a marked increase in permeance. It was found that the surface modifications mainly gave rise to a higher global flux but with a strong reduction in selectivity. Only the combination of both bulk and surface modifications with PEL could significantly increase the flux with a high water content in the permeate (over 98%). Lastly, it should be noted that this study developed a green procedure to prepare innovative membrane layers for dehydration, making use of only water as a working medium

    Controlled Growth of a Line Defect in Graphene and Implications for Gate-Tunable Valley Filtering

    Full text link
    Atomically precise tailoring of graphene can enable unusual transport pathways and new nanometer-scale functional devices. Here we describe a recipe for the controlled production of highly regular "5-5-8" line defects in graphene by means of simultaneous electron irradiation and Joule heating by applied electric current. High-resolution transmission electron microscopy reveals individual steps of the growth process. Extending earlier theoretical work suggesting valley-discriminating capabilities of a graphene 5-5-8 line defect, we perform first-principles calculations of transport and find a strong energy dependence of valley polarization of the charge carriers across the defect. These findings inspire us to propose a compact electrostatically gated "valley valve" device, a critical component for valleytronics

    Boron Nitride Monolayer: A Strain-Tunable Nanosensor

    Full text link
    The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.Comment: 20 pages, 9 figure

    Bioinspired Nanofeatured Substrates: Suitable Environment for Bone Regeneration.

    Get PDF
    Bone mimicking coatings provide a complex microenvironment in which material, through its inherent properties (such as nanostructure and composition), affects the commitment of stem cells into bone lineage and the production of bone tissue regulating factors required for bone healing and regeneration. Herein, a bioactive mineral/biopolymer composite made of calcium phosphate/chitosan and hyaluronic acid (CaP-CHI-HA) was elaborated using a versatile simultaneous spray coating of interacting species. The resulting CaP-CHI-HA coating was mainly constituted of bioactive, carbonated and crystalline hydroxyapatite with 277 ± 98 nm of roughness, 1 Όm of thickness, and 2.3 ± 1 GPa of stiffness. After five days of culture, CaP-CHI-HA suggested a synergistic effect of intrinsic biophysical features and biopolymers on stem cell mechanobiology and nuclear organization, leading to the expression of an early osteoblast-like phenotype and the production of bone tissue regulating factors such as osteoprotegerin and vascular endothelial growth factor. More interestingly, amalgamation with biopolymers conferred to the mineral a bacterial antiadhesive property. These significant data shed light on the potential regenerative application of CaP-CHI-HA bioinspired coating in providing a suitable environment for stem cell bone regeneration and an ideal strategy to prevent implant-associated infections.journal article2017 Apr 122017 03 30importe
    • 

    corecore