3 research outputs found

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk

    No full text
    Neurotrophins are considered as an attractive target for the development of antidepressants with a novel mechanism of action. Previously, the dimeric dipeptide mimetics of individual loops of nerve growth factor, NGF (GK-6, loop 1; GK-2, loop 4) and brain-derived neurotrophic factor, BDNF (GSB-214, loop 1; GTS-201, loop 2; GSB-106, loop 4) were designed and synthesized. All the mimetics of NGF and BDNF in vitro after a 5–180 min incubation in a HT-22 cell culture were able to phosphorylate the tropomyosin-related kinase A (TrkA) or B (TrkB) receptors, respectively, but had different post-receptor signaling patterns. In the present study, we conduct comparative research of the antidepressant-like activity of these mimetics at acute and subchronic administration in the forced swim test in mice. Only the dipeptide GSB-106 that in vitro activates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and phospholipase C-gamma (PLCγ) post-receptor pathways exhibited antidepressant-like activity (0.1 and 1.0 mg/kg, ip) at acute administration. At the same time, the inhibition of any one of these signaling pathways completely prevented the antidepressant-like effects of GSB-106 in the forced swim test. All the NGF mimetics were inactive after a single injection regardless of post-receptor in vitro signaling patterns. All the investigated dipeptides, except GTS-201, not activating PI3K/AKT in vitro unlike the other compounds, were active at subchronic administration. The data obtained demonstrate that the low-molecular weight BDNF mimetic GSB-106 that activates all three main post-receptor TrkB signaling pathways is the most promising for the development as an antidepressant

    Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    No full text
    corecore