9 research outputs found

    A retrocopy of a gene can functionally displace the source gene in evolution

    Get PDF
    The e(y)2 gene of Drosophila melanogaster encodes the ubiquitous evolutionarily conserved co-activator of RNA polymerase II that is involved in transcription regulation of a high number of genes. The Drosophila e(y)2b gene, paralogue of the e(y)2 has been found. The analysis of structure of the e(y)2, e(y)2b and its orthologues from other species reveals that the e(y)2 gene derived as a result of retroposition of the e(y)2b during Drosophila evolution. The mRNA-derived retrogenes lack introns or regulatory regions; most of them become pseudogenes whereas some acquire tissue-specific functions. Here we describe the different situation: the e(y)2 retrogene performs the general function and is ubiquitously expressed, while the source gene is functional only in a small group of male germ cells. This must have resulted from retroposition into a transcriptionally favorable region of the genome

    Early-late genes of the ecdysone cascade as models for transcriptional studies

    No full text
    <p>The <i>DHR3</i> and <i>Hr4</i> early-late genes of the ecdysone cascade are described as models for transcriptional studies in <i>Drosophila</i> cells. In a set of experiments, it became clear that these genes are a convenient and versatile system for research into the physiological conditions upon 20-hydroxyecdysone induction. <i>DHR3</i> and <i>Hr4</i> gene transcription is characterized by fast activation kinetics, which enables transcriptional studies without the influence of indirect effects. A limited number of activated genes (only 73 genes are induced one hour after treatment) promote the selectivity of transcriptional studies via 20-hydroxyecdysone induction. <i>DHR3</i> and <i>Hr4</i> gene expression is dose dependent, is completely controlled by the hormone titer and decreases within hours of 20-hydroxyecdysone withdrawal. The <i>DHR3</i> and <i>Hr4</i> gene promoters become functional within 20 minutes after induction, which makes them useful tools for investigation if the early activation process. Their transcription is controlled by the RNA polymerase II pausing mechanism, which is widespread in the genome of <i>Drosophila melanogaster</i> but is still underinvestigated. Uniform expression activation of the <i>DHR3</i> and <i>Hr4</i> genes in a cell population was confirmed at both the RNA and protein levels. Homogeneity of the transcription response makes DHR3/Hr4 system valuable for investigation of the protein dynamics during transcription induction.</p

    Two Isoforms of Drosophila TRF2 Are Involved in Embryonic Development, Premeiotic Chromatin Condensation, and Proper Differentiation of Germ Cells of Both Sexes

    No full text
    The Drosophila TATA box-binding protein (TBP)-related factor 2 (TRF2 or TLF) was shown to control a subset of genes different from that controlled by TBP. Here, we have investigated the structure and functions of the trf2 gene. We demonstrate that it encodes two protein isoforms: the previously described 75-kDa TRF2 and a newly identified 175-kDa version in which the same sequence is preceded by a long N-terminal domain with coiled-coil motifs. Chromatography of Drosophila embryo extracts revealed that the long TRF2 is part of a multiprotein complex also containing ISWI. Both TRF2 forms are detected at the same sites on polytene chromosomes and have the same expression patterns, suggesting that they fulfill similar functions. A study of the manifestations of the trf2 mutation suggests an essential role of TRF2 during embryonic Drosophila development. The trf2 gene is strongly expressed in germ line cells of adult flies. High levels of TRF2 are found in nuclei of primary spermatocytes and trophocytes with intense transcription. In ovaries, TRF2 is present both in actively transcribing nurse cells and in the transcriptionally inactive oocyte nuclei. Moreover, TRF2 is essential for premeiotic chromatin condensation and proper differentiation of germ cells of both sexes

    Development and Complex Application of Methods for the Identification of Mutations in the <i>FAD3A</i> and <i>FAD3B</i> Genes Resulting in the Reduced Content of Linolenic Acid in Flax Oil

    No full text
    Flax is grown worldwide for seed and fiber production. Linseed varieties differ in their oil composition and are used in pharmaceutical, food, feed, and industrial production. The field of application primarily depends on the content of linolenic (LIN) and linoleic (LIO) fatty acids. Inactivating mutations in the FAD3A and FAD3B genes lead to a decrease in the LIN content and an increase in the LIO content. For the identification of the three most common low-LIN mutations in flax varieties (G-to-A in exon 1 of FAD3A substituting tryptophan with a stop codon, C-to-T in exon 5 of FAD3A leading to arginine to a stop codon substitution, and C-to-T in exon 2 of FAD3B resulting in histidine to tyrosine substitution), three approaches were proposed: (1) targeted deep sequencing, (2) high resolution melting (HRM) analysis, (3) cleaved amplified polymorphic sequences (CAPS) markers. They were tested on more than a thousand flax samples of various types and showed promising results. The proposed approaches can be used in marker-assisted selection to choose parent pairs for crosses, separate heterogeneous varieties into biotypes, and select genotypes with desired homozygous alleles of the FAD3A and FAD3B genes at the early stages of breeding for the effective development of varieties with a particular LIN and LIO content, as well as in basic studies of the molecular mechanisms of fatty acid synthesis in flax seeds to select genotypes adequate to the tasks

    The readout system and the trigger algorithm implementation for the UFFO Pathfinder

    No full text
    Since the launch of the SWIFT, Gamma-Ray Bursts (GRBs) science has been much progressed. Especially supporting many measurements of GRB events and sharing them with other telescopes by the Gamma-ray Coordinate Network (GCN) have resulted the richness of GRB events, however, only a few of GRB events have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has a coded-mask X-ray camera to search the GRB location by the UBAT trigger algorithm. To determine the direction of GRB as soon as possible it requires the fast processing. We have ultimately implemented all algorithms in field programmable gate arrays (FPGA) without microprocessor. Although FPGA, when compared with microprocessor, is generally estimated to support the fast processing rather than the complex processing, we have developed the implementation to overcome the disadvantage and to maximize the advantage. That is to measure the location as accurate as possible and to determine the location within the sub-second timescale. In the particular case for a accuracy of the X-ray trigger, it requires special information from the satellite based on the UFFO central control system. We present the implementation of the UBAT trigger algorithm as well as the readout system of the UFFO Pathfinder
    corecore