3,656 research outputs found

    Top Inventions in Engineering

    Get PDF

    D-branes in the WZW model

    Get PDF
    It is stated in the literature that D-branes in the WZW-model associated with the gluing condition J = - \bar{J} along the boundary correspond to branes filling out the whole group volume. We show instead that the end-points of open strings are rather bound to stay on `integer' conjugacy classes. In the case of SU(2) level k WZW model we obtain k-1 two dimensional Euclidean D-branes and two D particles sitting at the points e and -e.Comment: 2 pages, LaTe

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups

    Full text link
    In this paper, we construct a Lagrangian submanifold of the moduli space associated to the fundamental group of a punctured Riemann surface (the space of representations of this fundamental group into a compact connected Lie group). This Lagrangian submanifold is obtained as the fixed-point set of an anti-symplectic involution defined on the moduli space. The notion of decomposable representation provides a geometric interpretation of this Lagrangian submanifold

    "Spread" restricted Young diagrams from a 2D WZNW dynamical quantum group

    Full text link
    The Fock representation of the Q-operator algebra for the diagonal WZNW model on SU(n) at level k, where Q is the matrix of the 2D WZNW "zero modes" generating certain dynamical quantum group, is finite dimensional and has a natural basis labeled by su(n) Young diagrams Y of "spread" not exceeding h := k+n (spr (Y) = #(columns) + #(rows))Comment: 10 pages, 8 figures, submitted to the Proceedings of the 11th International Workshop "Lie Theory and Its Applications in Physics" (Varna, Bulgaria, 15-21 June 2015); v.2 - amended Introduction, figures and list of reference

    Berezin quantization, conformal welding and the Bott-Virasoro group

    Full text link
    Following Nag-Sullivan, we study the representation of the group Diff+(S1){\rm Diff}^+(S^1) of diffeomorphisms of the circle on the Hilbert space of holomorphic functions. Conformal welding provides a triangular decompositions for the corresponding symplectic transformations. We apply Berezin formalism and lift this decomposition to operators acting on the Fock space. This lift provides quantization of conformal welding, gives a new representative of the Bott-Virasoso cocylce class, and leads to a surprising identity for the Takhtajan-Teo energy functional on Diff+(S1){\rm Diff}^+(S^1).Comment: 26 page

    Stability properties of periodically driven overdamped pendula and their implications to physics of semiconductor superlattices and Josephson junctions

    Get PDF
    We consider the first order differential equation with a sinusoidal nonlinearity and periodic time dependence, that is, the periodically driven overdamped pendulum. The problem is studied in the case that the explicit time-dependence has symmetries common to pure ac-driven systems. The only bifurcation that exists in the system is a degenerate pitchfork bifurcation, which describes an exchange of stability between two symmetric nonlinear modes. Using a type of Prufer transform to a pair of linear differential equations, we derive an approximate condition of the bifurcation. This approximation is in very good agreement with our numerical data. In particular, it works well in the limit of large drive amplitudes and low external frequencies. We demonstrate the usefulness of the theory applying it to the models of pure ac-driven semiconductor superlattices and Josephson junctions. We show how the knowledge of bifurcations in the overdamped pendulum model can be utilized to describe effects of rectification and amplification of electric fields in these microstructures.Comment: 15 pages, 7 figures, Revtex 4.1. Revised and expanded following referee's report. Submitted to journal Chaos

    Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12

    Get PDF
    The spin dynamics of mixed-valence YbB12 has been studied by inelastic neutron scattering on a high-quality single crystal. In the Kondo-insulating regime realized at low temperature, the spectra exhibit a spin-gap structure with two sharp, dispersive, in-gap excitations at E = 14.5 and approximately 20 meV. The lower mode is shown to be associated with short-range correlations near the antiferromagnetic wave vector q0 = (1/2, 1/2, 1/2). Its properties are in overall agreement with those expected for a "spin exciton'' branch in an indirect hybridization gap semiconductor.Comment: 4 pages, 4 figures ; submitted to Physical Review Letter
    corecore