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We consider the first order differential equation with a sinusoidal nonlinearity and periodic time
dependence, that is, the periodically driven overdamped pendulum. The problem is studied in the
case that the explicit time dependence has symmetries common to pure ac-driven systems. The only
bifurcation that exists in the system is a degenerate pitchfork bifurcation, which describes an
exchange of stability between two symmetric nonlinear modes. Using a type of Prüfer transform to
a pair of linear differential equations, we derive an approximate condition of the bifurcation. This
approximation is in very good agreement with our numerical data. In particular, it works well in the
limit of large drive amplitudes and low external frequencies. We demonstrate the usefulness of the
theory applying it to the models of pure ac-driven semiconductor superlattices and Josephson
junctions. We show how the knowledge of bifurcations in the overdamped pendulum model can be
utilized to describe the effects of rectification and amplification of electric fields in these
microstructures. © 2010 American Institute of Physics. �doi:10.1063/1.3382087�

Pendulum and pendulumlike equations are arguably
among the most important classes of equations in modern
nonlinear science.1 The most often encountered represen-
tatives of this family may well be the driven and damped
pendulum, �̈+��̇+sin �= f„t…, and its first order counter-

part, the overdamped pendulum, ��̇+sin �= f„t…, the lat-
ter type being the topic of this paper. These equations
appear, for instance, in the well-known
Stewart–McCumber2,3 and Aslamazov–Larkin4 models of
Josephson junctions. The sinusoidal nonlinearity gives
rise to a wide class of nonlinear phenomena that have
important practical applications: the ac-Josephson
effect5,6 and the modern voltage standard7 are prime ex-
amples of this. More recently, pendulum equations have
been found in the theory of semiconductor superlattices
where they frequently occur in the limiting cases of the
governing differential equations.8–14 Moreover, over-
damped pendulum equations are often encountered in
mathematical models of synchronization of nonlinear
oscillators.15 Further recent interest in the overdamped
pendula has come from the field of high-Tc superconduct-
ors: it has been demonstrated that stacked array of in-
trinsic Josephson junctions in magnetic field can be syn-
chronized and described by overdamped pendulumlike
dynamics.16,17 Properties of ac-driven overdamped pen-
dula are also of importance in theories of the amplifica-
tion of microwave radiation in Josephson point
contacts.18–21 And last but not least, in our previous
work22 we demonstrated how instabilities occurring in
the overdamped pendulum are carried over to higher di-
mensional systems such as the strongly damped second
order pendulum equation. Our present paper has two
sides: mathematical and physical. Here we develop a
mathematical technique which allows to find bifurcations

in a class of overdamped pendula models for a wide
range of their parameters, including a difficult but physi-
cally interesting case of low frequencies of driving force.
We also show how this technique can be applied to sym-
metric physical systems demonstrating pendulum dy-
namics in some limiting cases. Our main focus is on the
rectification and amplification of microwave radiation in
unbiased semiconductor superlattices and Josephson
junctions.

I. INTRODUCTION

We consider the first order ordinary differential equation
with a sinusoidal nonlinearity and arbitrary time dependence

�̇�t� + G�t�sin ��t� = F�t� . �1�

The dynamics of the overdamped pendulum has been studied
by several people, motivated by direct physical applications
mentioned above. In spite of its apparent simplicity, novel
nonlinear dynamics, e.g., strange nonchaotic attractors,23

have been found. Here, we restrict ourselves to a specific
class of periodic forcing, specifically consider bifurcations
occurring in these systems, and its applications in physical
systems.

We will implicitly assume everywhere that F and G are
real, continuous, and differentiable sufficiently many times.
Our focus will be on functions F and G that have the follow-
ing property:

F�t + T/2� = − F�t�, G�t + T/2� = G�t� . �2�

With the above choice of external time dependence, Eq. �1�
remains invariant under the transformation
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t → t + T/2, ��t� → − ��t + T/2� + 2k� , �3�

and k is an integer. This type of forcing and the associated
symmetry are of interest in many pure ac-driven physical
systems, in particular bulk semiconductors and semiconduc-
tor superlattices, where breaking of symmetry �3� implies
generation of a spontaneous dc bias.8,24 In our previous
work22 we in passing considered Eq. �1� with G�t�=1 and
F�t�= f cos �t. We observed that the only instability that oc-
curs is an exchange of stability between two periodic solu-
tions following symmetry �3� and having the properties
���=0 and ���=�, where � · � stands for time average across
the period of the solution.

We found that the symmetry breaking bifurcation
�����0,�� �Refs. 25 and 26� of the strongly damped second
order pendulum

�̈ + ��̇ + sin � = f cos �t �4�

reduced to this instability in the limit of very large damping.
We conjectured that other ac-driven systems reducible to Eq.
�1� undergo a type of bifurcation similar to the one found in
the strongly damped pendulum equation near the points
where the exchange of stability occurs. This motivates our
present extended study of the stability properties of system
�1� and applications to a number of physical systems.

In this paper, our mathematical analysis is based on map-
ping of Eq. �1� to a particular second order linear differential
equation. Such transformations have proved useful in the
study of various linear and nonlinear differential equations.
Following Prüfer’s application of the idea to Sturm–
Liouville problems,27 these changes in variables are some-
times called Prüfer transforms. In a sense the reverse of this
approach was taken in by Bondeson et al.,28 where the au-
thors used a similar transformation to study quasiperiodically
driven overdamped equation by relating the problem to a
Schrödinger equation with a quasiperiodic potential. We take
essentially the same approach but focus on the more specific
problem of periodically driven equation.

On the other hand, applications considered in this paper
are based on the connection of an exchange of stability in the
pendulum with the physical phenomena of amplification and
rectification. Here we consider the effects of microwave rec-
tification and amplification in two pure ac-driven systems
reducible to the overdamped pendulum: single-band lateral
semiconductor superlattice and point-contact Josephson
junction.

Formally, by rectification we mean the conversion of
pure ac excitation into response at even harmonics of some
quantity that is an odd function of �; for instance � itself or
sin �. As an example of rectification, consider Eq. �4� as a
toy model where the drive f�t� corresponds to some ac ap-
plied field and that current is j�t��sin �. Rectification would
then imply jdc= �j�t���0, i.e., obtaining a direct current re-
sponse from a pure ac excitation, hence the term “rectifica-
tion.” For symmetric solutions �j�t��=0 rectification is

impossible, since � will only have odd harmonics, excluding
possibly zeroth harmonic that is a multiple of �. Thus, sym-
metry breaking is a prerequisite for rectification.

Note that rectification due to spontaneous breaking of
symmetry in solutions, Eq. �3�, should be distinguished from
phase-dependent rectification due to breaking of symmetry in
the equations.29 The latter requires explicitly introducing f
that does not follow Eq. �2�, for example, an additional
phase-shifted second harmonic cos��t�+cos�2�t+��.

For large damping we get overdamped first order pendu-
lum for which exchange of stability arises for same param-
eters as symmetry breaking in second order pendulum. Rec-
tification in pendulum is, however, rather artificial model
which does not correspond to any real physical system. Nev-
ertheless, in dynamical systems describing realistic physical
situations, symmetry breaking bifurcation is realized near
values of parameters that are close to the values necessary
for the exchange of stability in the overdamped pendulum.

Here we consider a model of ac-driven lateral semicon-
ductor superlattice11,12 which is described by two first order
nonlinear balance equations which can be reduced to a sort
of overdamped pendulum �see Eq. �30� in the limit of strong
nonlinearity�. Symmetry breaking in balance equations of
lateral superlattice corresponds to rectification of applied ac
electric field.12 We demonstrate how analysis of instabilities
in Eq. �1� can provide a quite useful information on the pa-
rameter space of rectification in these nanostructures.

Our another application is related to amplification of in-
finitesimally weak signal in Josephson point contact de-

scribed by Eq. �1�, in which �̇ is the voltage, f�t� is the
current, and � itself is the difference of phases of wave func-
tions of superconductors in the junction. As a rule, an ampli-
fication of a small signal is observed near the onset of a
dynamical instability.30,31 Here we show a small-signal am-
plification near an exchange of stability and at frequencies of
signal close to even harmonics of pump. Therefore, this ef-
fect of amplification can be considered also reminiscent of
symmetry breaking bifurcation in strongly damped second
order pendulum equation �4�. Despite here even harmonics
are forbidden by symmetry, nontrivial amplification of addi-
tional weak signal does exist at pump amplitudes and fre-
quencies close to those necessary to realize real symmetry
breaking.

The outline of this paper is as follows. In Sec. II we will
introduce the change in variables that yields a second order
linear differential equation and briefly recapitulate on some
known properties of its solution and their implications on Eq.
�1�. We will then proceed to the more specific problem of
forcing following Eq. �2� and show that an exchange of sta-
bility is the only instability occurring in this system. We then
consider perturbations of Eq. �1� and essentially prove our
earlier conjecture that the exchange of stability is a limit of
pitchfork bifurcations �PBs�. In Sec. IV, we shift to a more
practical approach: an approximate condition for the instabil-
ity to occur will be derived in nontrivial case of large F and
G. Finally, we go on to apply the results to relevant physical
problems. Technical details are presented in Appendixes
A–C.
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II. EQUIVALENT LINEAR EQUATION

We start by introducing a change in variables from ��t�
to new variables q1�t� ,q2�t� as

��t� = 2 arctan�q1�t�
q2�t�

� . �5�

We will denote the vector �q1�t� ,q2�t��T by Q and the change
in variables by ��t�=C�Q�t��. Since Eq. �5� alone does not fix
the functions q1, q2, we have some freedom in choosing the
differential equations for the new variables. Here we opt for
a particularly symmetric form of the equations

d

dt
�q1�t�

q2�t�
� =

1

2
�− G�t� F�t�

− F�t� G�t�
��q1�t�

q2�t�
� . �6�

The coefficient matrix on the right-hand side of Eq. �6� will
be denoted by A. We consider only periodic F and G, and
therefore Floquet theory can be directly applied to the prob-
lem. We adopt the following notations for the Floquet solu-
tions �i, i=1,2:

�i�t� = eBitPi�t� = eRe	Bi
tP̃i�t� , �7�

where Bi are the �complex� characteristic exponents and

Pi�t� are T-periodic functions. Functions P̃i�t� contain the
oscillating parts of the Floquet solutions. Additional lower

indices will label the component of �i, Pi, and P̃i, e.g.,
�i= ��i,1 ,�i,2�T. Due to the vanishing trace of A, the char-
acteristic exponents have always the form �a� B1,2=�B0

+2�ik1,2 /T, where B0 is real and k1,2 are integers, or �b�
B1,2=2�i��r+k1,2� /T, where r is real and not an integer.
In Sec. III, we will show that the latter case is never realized
if symmetry �2� applies, and thus case �b� will not be
addressed in what follows. However, the special case of
B1,2=2�ik1,2 /T �B0=0� will be covered.

The Floquet solutions give a complete description of dy-
namics of ��t�. Supposing case �a� from above holds, the
general solution of the pendulum equation is

��t� = C�cos
	0

2
eB0tP̃1 + sin

	0

2
e−B0tP̃2� , �8�

where 	0 is a constant that depends on the initial value of �,
and whose value over −�
	�� uniquely determines the
solution � up to modulo 2�. Clearly, when B0�0 there are
exactly two periodic solutions �i, i=1,2, that are simply
given by the Floquet solutions

�i�t� = 2 arctan��i,1�t�
�i,2�t�

� . �9�

From Eq. �8� it follows that stable solutions of the over-
damped pendulum correspond to the unstable solutions of
the linear equation and vice versa. This can be also seen from
the relation that appears in Refs. 28 and 32 and also applies
here,

− � =
1

T



0

T

G�t��cos ��t��dt� = 2�B0� , �10�

where � is the average exponential rate of growth for a
infinitesimal perturbation of �. Negative of its absolute value

coincides with the maximal Lyapunov exponent of Eq. �1�.
Periodicity of the asymptotic solutions in the sense that
��t+T�=��t�+2�n also follows immediately from the form
of the Floquet solutions.

III. SYMMETRIC CASE

We now turn to our findings regarding Eq. �6� with forc-
ing following Eq. �2�. Matrix A transforms in the T /2-shift as
A�t+T /2�= ẽA�t�ẽ, where

ẽ = �1 0

0 − 1
� . �11�

This property enables us to write the principal matrix U,

U̇=AU, U�0�= I, on the latter half of a drive cycle in terms of
the former

U�t + T/2� = ẽU�t�ẽU�T/2� . �12�

The monodromy matrix M =U�T� can now be factored into a

square of the matrix M̃ = ẽU�T /2�, and the eigenvalue
equation determining the Floquet solutions, M�i�0�
=exp�BiT��i�0�, can be solved using the matrix M̃ instead of

M. Determinant of M̃ equals 
1, and thus the solution to the
characteristic equation becomes

B1,2 = �
2

T
arcsinh�1

2
tr M̃�

−
2

T
arcsinh�1

2
tr M̃� + i

2�

T
.� �13�

This shows that B1,2 are always real or real plus an integer
multiple of 2i� /T. We will make frequent use of real part of

B1, Re	B1
=B0=2 arcsinh�tr M̃ /2� /T.
For the periodic parts Pi of the Floquet solutions, the

following now holds. Applying Eq. �12� and M̃�i�0�
=exp�BiT /2��i�0� one finds that Pi�t+T /2�= ẽPi�t�. Compo-
nentwise this property reads

Pi,1�t + T/2� = Pi,1�t� , �14a�

Pi,2�t + T/2� = − Pi,2�t� . �14b�

That is, the first component of Pi is T /2-periodic, and the
second T /2-antiperiodic. It immediately follows that the pe-
riodic solutions �i of Eq. �1� are symmetric in the sense of
Eq. �3�. Note that our definition for B2, Eq. �13�, includes an
imaginary component, which contributes to the oscillating
part of �2. Therefore, P2 is not real, and it is then more

convenient to use the functions P̃i instead. Now P̃1= P1, and

so P̃1 has the same periodicity as P1. On the other hand

P̃2=exp�2i�t /T�P2, and thus P̃2,1 is T /2-antiperiodic and

P̃2,2 is T /2-periodic.
Equation �14� also determines two properties regarding

the rotations and the average value of the periodic solutions
�i. Here we assume that roots of F are simple, that is,

if F�t�=0 then Ḟ�t��0. We aim to connect the number of
zeros of �i,2�t� over 0� t
T /2, here denoted n, to
physically relevant properties of �i—it will be shown that n
indeed has significance to dynamics of real physical systems
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we are considering. Since �i is symmetric, we can write
�i�T /2�=−�i�0�+2�j, where j counts the positive direction
crossings of the line �=� mod 2�. From Eq. �9� it can be
seen that these crossings occur at simple zeros of �i,2, and
from Eq. �1� that the direction of the crossing is given by the
sign of F. Using again the symmetry, the average of �i over
t=0¯T, ��i�, is j�. Now, it is easy to see that the parities of
n and j are the same, and thus ��i�=n� mod 2�. From Eq.
�14� it is clear that n is odd for �1 and even for �2, and so
��1�=� and ��2�=0, both modulo 2�. This shows that our
previous finding22 regarding the averages of � regarding the
case F�t�= f sin �t and G�t�=1 holds in general.

Further, n relates to the oscillations of sin �i and other
quantities that are periodic �. For instance, consider F is such
that F�t��0 �
0� for 0
 t
T /2 �T /2
 t
T�. As � rotates
it passes the upright vertical position n times and always in
the positive direction, and so n gives the minimum and maxi-
mum number of oscillations of sin �i or cos �i in one half
drive period. This has implications to the physical systems
we are considering, since in these sin � and cos � have rel-
evant physical interpretations.

A. Exchange of stability

Having established that the characteristic exponents are
always real plus integer multiples of i2� /T, it then follows
that the only possible type of instability is an exchange of
stability where one Floquet solution loses stability and the

other gains it. This in turn occurs when tr M̃ =0 and as con-

sequence B0=0. Noting that eigenvalues of M̃ are never
equal, one finds that vectors �i�t�, i=1,2, are linearly inde-
pendent for all t and for any B0. Thus, the Floquet solutions
�i never map to same solution of Eq. �1� and the correspond-
ing asymptotic solutions �i�t�=C��i�t�� never cross each
other as a parameter is varied. Consequently, the stability is
exchanged without the solutions colliding, in contrast to a
transcritical bifurcation. We will later show, however, that
the exchange of stability can be seen as a type of PB. From
Eq. �8� it is clear that when B0=0 all solutions to the over-
damped pendulum are periodic. Since the superposition

cos�	0 /2�P̃1+sin�	0 /2�P̃2 that gives the general solution,
Eq. �8�, does not have periodicity analogous to Eq. �14�, the
corresponding solutions � are not symmetric.

Further, crossing the instability has a clear effect on
some relevant quantities. As was discussed above, the num-
ber of simple roots of �i,2 relates to the rotations and the
average of �. Let then �+ be the unstable Floquet solution,
�+=C��+� the stable periodic solution of the overdamped
pendulum, and n the number of simple roots of �+�t� over
0� t
T /2. Because at the instability �+ switches between
being �1 and �2, n changes by one. Consequently, the aver-
age value of the stable periodic solution jumps by �, and
further, since the value of n is intimately connected to the
oscillations of sin � and cos �, these quantities exhibit a
change in their frequency spectrum. We will later apply
this finding in the section on lateral semiconductor superlat-
tices. Clearly, the integer n partitions the parameter space

into disjoint regions with the instability separating them.
Thus, n serves as a convenient label for different regions of
parameter space.

To help illustrate the bifurcation, we introduce a
Poincaré map �. Naturally we take this to be the strobo-
scopic map, defined so that ��t0+T�=����t0�� for some fixed
t0 which we take to be zero. If B0�0, the two fixed points

�i
�, i=1,2, of � are given in terms of the eigenvectors of M̃

or Floquet solutions at t=0, �i�0�,

�i
� = 2 arctan��i,1�0�

�i,2�0�� . �15�

From the discussion above it follows that at B0=0, ����=�
for all �. In Fig. 1 we have plotted a representative bifurca-
tion diagram. We take G�t�=1 and F�t�= f sin �t, where
�=0.3, and plot the fixed points �i

� as a function of the
forcing amplitude f . From the diagram the bifurcation sce-
nario can be easily visualized. At f =0 �outside the plot
range� we have two fixed points: �=0, �, where the latter is
naturally the unstable point, since it corresponds to the up-
right position of the pendulum. At f �1.356 we find the first
bifurcation. The initially unstable state becomes the stable
one and vice versa as the critical f is crossed. Exactly at the
bifurcation, every point � is a fixed point of the Poincaré
map. From there on, increasing f further, we find the fixed
points exchange their stabilities again at f �2.118 and
f �2.956 with the marginally stable points spanning the
whole phase space exactly at the bifurcation.

The bifurcation described above bears resemblance to a
PB. In fact it can be seen as a degenerate PB, since two new
branches of fixed points emerge at the critical point. By de-
generacy, we mean that these branches exist only exactly at
the bifurcation point, span the whole phase space, and are
thus only marginally stable. This is in contrast to the �non-
degenerate� PB, where the two additional branches of fixed
points exist before or after the bifurcation, which are either

1.0 1.5 2.0 2.5 3.0
�Π

� �Π
2

0

�Π
2

Π

f

Θ

FIG. 1. Bifurcation diagram showing the fixed points of the stroboscopic
map � of Eq. �1� as a parameter is varied. Here G�t�=1 and F�t�
= f sin �t, where �=0.3. Forcing amplitude f is taken as the control param-
eter. Solid and dashed lines indicate stable and unstable fixed points, respec-
tively, while dotted line indicates marginally stable fixed points. These span
the whole phase space and occur exactly at B0=0.
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stable �supercritical case� or unstable �subcritical case�. We
note that this is reminiscent of the scenario observed for the
second order, strongly damped pendulum,22 where a �nonde-
generate� PB was found near the criterion for exchange of
stability in the overdamped equation.

In terms of normal forms, nondegeneracy is understood
as nonvanishing of a number of higher order derivatives with
respect to the variable of the flow at an equilibrium.33 We
will see that this is indeed the case when we map Eq. �1� to
an autonomous equation that is effectively a normal form on
the circle 0¯2�. The form of the general solution, Eq. �8�,
suggests a natural way of mapping Eq. �1� into an equivalent

autonomous form: the periodic parts P̃i describe the rotations
of �, while the exchange of stability is determined by the
exponential factors and the superposition phase 	0. It seems
natural to use a trial function where the constant phase 	0 is
replaced by a time-dependent 	�t�, which also accounts for
the exponential factors

��t� = 2 arctan� cos
	�t�

2
P̃1,1�t� + sin

	�t�
2

P̃2,1�t�

cos
	�t�

2
P̃1,2�t� + sin

	�t�
2

P̃2,2�t�� . �16�

We substitute this into Eq. �1� and use Eq. �6� to obtain an
equation for 	,

	̇ = − 2B0 sin 	 . �17�

No approximations were needed to derive Eq. �17�. This
equation describes the approach to limit cycles for the whole
class of systems. Obviously, it is also the simplest nontrivial
overdamped pendulum that has symmetry �2�. Equation �17�
has equilibria 0, � when B0�0, in the case B0=0 every point
is an equilibrium, cf. Fig. 1. To compare bifurcations of Eq.
�17� with the PB, we recall that the normal form of a PB is
ṙ=r���r2�, where � is the bifurcation parameter.33

From Eq. �17�, we see that near the equilibrium 0 ���,
	̇=��	�1−	2 /6+¯�, where �=2B0. Thus, we see that
whereas in the nondegenerate case, only the leading order
term vanishes at the bifurcation, here the right-hand side be-
comes identically zero at �=0.

To help visualize how the Floquet solutions relate to the
periodic solutions of the pendulum, we have plotted in Fig. 2
the periodic solutions �i�t�=C��i�t��, together with the
Floquet solutions �i.

49 We have used the same G and F as
above and take f to be near the third bifurcation shown in
Fig. 1. The left-hand side subfigures �a�, �c�, and �e� show the
solutions for f =2.9, which is just smaller than the critical
value of f =2.956, while subfigures �b�, �d�, and �f� are plot-
ted for f =3.0. From �a� and �b� it can be seen that the �i

change little across the bifurcation point, only the stability is
exchanged. Similarly, the Floquet solutions remain roughly
unchanged as the critical f is crossed, excluding the fact that
the exponential envelope switches from decaying to diverg-
ing or vice versa.

B. Effect of perturbations

From Eq. �17� it is evident that near a bifurcation the
system is structurally unstable. An important question is then
how dynamics change when a perturbation that allows for
breaking of the symmetry �3�, or explicitly breaks Eq. �2�, is
introduced. An exhaustive study of such perturbations is be-
yond the scope of this paper. Nonetheless, we wish to show
that the new type of dynamics appears at the exchange of
stability when a perturbation is introduced. This is because to
a large extent our motivation has been to show that the ex-
change of stability is in a sense a limit of bifurcations that
occur in realistic physical systems that reduce to the over-
damped pendulum. The perturbation is then to be understood
as the terms removed from the original nonlinear system
describing the real physical system to obtain the overdamped
pendulum. Therefore, we wish to show that symmetry break-
ing, or other type of dynamics, appears exactly at the ex-
change of stability.

We use trial function of the form given in Eq. �16� to
probe the response of the system to small additional terms.
We introduce a perturbed system

�̇ + G�t�sin � = F�t� + �H��,t� , �18�

where 0
��1 and H�−�+2k� , t+T /2�=−H�� , t� does not
necessarily hold. Substituting the trial function of Eq. �16�
into Eq. �18� we obtain the equation
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FIG. 2. Representative periodic solutions �i, i=1,2, of Eq. �1� with F�t�
= f sin �t, G�t�=1 and the corresponding Floquet solutions �i just before
��a�, �c�, and �e�� and after a bifurcation ��b�, �d�, and �f�� �Ref. 49�. In both
�a� and �b�, the stable �unstable� periodic solution � is plotted with a solid
�dashed� line. Similarly, Floquet solution mapping to the stable �unstable� �
is plotted with solid �dashed� line. Note that it is the unstable � that corre-
sponds to the stable �. In the left-hand side ��a�, �c�, and �e��, parameter f
=2.9, which is just below the critical value of f =2.956, while on the right-
hand side ��b�, �d�, and �f�� the parameter f is just above it, f =3.
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	̇ = − 2B0 sin 	 − ���	,t�T��	,t�H���	,t�,t� , �19�

where ��	 , t�=cos�	 /2�P̃1�t�+sin�	 /2�P̃2�t�. We have fixed
the normalization of the Floquet solutions so that
�1,1�0��2,2�0�−�1,2�0��2,1�0�=1.34 Unlike in the case of
Eq. �17� further approximations are needed. Smallness of �
and B0 near a bifurcation can be used to simplify the above
equation.

First, we prove our earlier conjecture that the exchange
of stability is the �→0 limit of PBs appearing in more real-
istic systems following Eq. �2� or equivalent. We consider
H=H��� that follows the symmetry H�−�+2k��=−H���
but contains even harmonics of �. We note that the trial
superposition � has the property ��−	+2k� , t+T /2�
= �−1�kẽ��	 , t�. In this case, it then follows that also Eq. �19�
has symmetry �2�. Using the averaging method,35 we find
that the averaged equation for 	 will have the form

	̇ � − 2B0 sin 	 + �a1 sin 	 + �a2 sin 2	 + ¯ , �20�

where ak are constants which in general are nonzero. Cosine
harmonics of 	 in the averaged equation are forbidden by
symmetry. Possible bifurcations of the perturbed system can
then be qualitatively sketched by fixing ak and plotting the

roots of 	̇=0. As an example, if a2�0 and ak=0 for k�3,
we find that the degeneracy of the PB has been lifted. A
representative bifurcation diagram is shown in Fig. 3, where
the equilibria of Eq. �20� are plotted for �a2=−0.1, ak=0 for
k�2. For comparison, the inset shows the degenerate limit
of a2=0. It can be seen that the degenerate PB is replaced by
a pair of nondegenerate PBs that are supercritical for a2
0
and subcritical for a2�0. Between the bifurcations, an equi-
librium 	 exists that is not equal to 0 or �, and thus is a
symmetry broken solution of Eq. �20�. In this case, the
t→� solution � of the pendulum equation will be described
by a superposition of two Floquet solutions, and therefore, it

too will not in general have symmetry �3�. Thus we see that
the exchange of stability is the limit of a symmetry breaking
PB for symmetrically perturbed systems.

If the perturbation H has only explicit, T2-antiperiodic
time dependence, H=H�t� and H�t+T2 /2�=−H�t�, then the
system will respond strongly when the perturbation fre-
quency �2=2� /T2 is close to an even multiple of �=2� /T.
This can be seen by noting that �T� has T /2-periodic zeroth
and first cosine harmonic of 	. Therefore, the right-hand side
of Eq. �19� will contain cosine harmonics of 	 whose coef-
ficients oscillate at a frequency �2�−�2��1. Using again the
averaging method, these terms will not vanish but contribute
to slow, large amplitude oscillations of 	. We will later show
that this effect has interesting consequences in the problem
of weak signal amplification in Josephson junctions. Note
also that this is in effect a dual of the PB described above—
the difference is that here the response follows from a near
even harmonic of the drive, not the angle �.

Finally, if the perturbation does not follow the symmetry
�2� but still depends on �, one expects to see the cosine terms
appearing in Eq. �20�. Depending on the perturbation there
are several possible outcomes. The various bifurcation sce-
narios can then be enumerated by selecting the coefficients
on the right-hand side of Eq. �20�. As an example, the PB
may become an imperfect PB,33 or essentially a saddle-node
bifurcation, or the equilibria may be destroyed altogether
near exchange of stability.

In summary, we described the scenario for the develop-
ment of only instability occurring in the system of type equa-
tion �1� following symmetry equation �2�. The scenario fol-
lows the one found in our previous work.22 At a critical point
a symmetric solution of Eq. �1� loses stability and another
one gains it. The exchange of stability also marks the point
where the average � shifts from a minimum of the potential
cos � to a maximum or vice versa. Exactly at the critical
point neither of the Floquet solutions is diverging �and both
indeed are still linearly independent�, and hence the system
will remain in some initial superposition indefinitely. In this
special case, the symmetry �3� need not be satisfied. This
state is, however, only marginally stable, since a perturbation
will neither decay nor diverge, and occurs only in a null set
of parameter values.

We conclude by reviewing some of the analytic methods
of approaching the overdamped pendulum equation to the
exact linearization used here. The point of commonality to
these methods is that they, in one way or another, consider
the nonlinearity as a perturbation. For instance, the often
used technique of using single harmonic trial function has
required the assumption that the sine term only has the effect
of changing the amplitude and phase of the otherwise sinu-
soidal solution. Although the number of harmonics included
in the truncation can be increased, the equations quickly get
intractable. Averaging method can also be employed, as it
indeed was in our analysis of Eq. �20�; however, again the
potential term needs to be small compared with the time
scale at which � varies. In contrast, the mapping to the linear
equation, Eq. �6�, fully retains the nonlinearity whilst still
allowing the use of tools for periodically forced linear equa-
tions, such as Floquet theory.
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Μ
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�1 0 1
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FIG. 3. Bifurcation diagram showing the equilibria of Eq. �20� for
�a2=−0.1, ak=0 for k�2. The Horizontal axis is the bifurcation parameter,
�=2B0. Stable �unstable� equilibria are plotted with solid �dashed� lines.
The inset shows the degenerate case of ak=0 for all k. The inset axis is the
same as in the main figure, and the dotted line at �=0 shows the marginally
stable equilibria. The main figure demonstrates that the degenerate PB is
replaced by a pair of supercritical PBs at �=�0.2. Between the bifurcations
the equilibria 0 ,� are unstable, while a new equilibrium with 	�0,� cor-
responds to symmetry broken solution of Eqs. �20� and �18�.
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Treating the nonlinearity nonperturbatively also allows
us to approach the limit of low frequency driving. In Sec. IV,
we derive approximate analytical formulas for the solutions
of the overdamped pendulum. Instead of studying the actual
time dependence of �, we continue with the focus on finding
the critical points where the exchange of stability occurs.

IV. ASYMPTOTIC SOLUTION OF EQUATION „6…

We consider next approximate solutions of Eq. �1� in the
nontrivial limit of large F and G, or equivalently, low fre-
quency. We introduce a large parameter � into the problem
by making the change F�t�→�F�t�, G�t�→�G�t�. In the
leading order of �, we find that the equation we need to solve
comes out as

ÿ +
�2

4
�F�t�2 − G�t�2�y = 0, �21�

where y=q1 or y=q2. Equation �21� is found by taking the
derivative of Eq. �6�. Keeping only terms of order �2, one
finds Eq. �21� for both q1 and q2 separately. We note that Eq.
�21� does not share the symmetry of Eq. �6�; however, results
of Sec. III allow us to construct an approximate solution that
has the expected properties. This follows from the fact that
we need only to solve for the first half of a drive cycle
t=0¯T /2 and if needed, use Eq. �12� to obtain the complete
solution.

Standard methods of asymptotic analysis36 can be ap-
plied to Eq. �21� to find its piecewise solution in the form
�see Appendix A�

yi�t� =
1

�R�t��1/4 �aie
wi�i�t� + bie

−wi�i�t�� , �22�

where R�t�= �F�t�2−G�t�2� /4, �i�t�=�ti
t �R�t��1/2dt, and wi=1

�wi=�−1� for R�t�
0 �R�t��0�. We denote by ti the turning
points �points such that R�ti�=0� and by N their number, i.e.,
i=1, . . . ,N. Additionally, t0=0 and tN+1=T /2. Coefficients
ai ,bi are solved from the initial conditions, and standard con-
nection formulas for adjoining subintervals are applied. Us-
ing Eq. �22� it is straightforward to construct a solution to
any particular F ,G.

Although piecewise solutions naturally can be cumber-
some, we next show that tractable formulas can be obtained
for quantities of interest. Naturally, we apply Eq. �22� to

calculating tr M̃, as its zeros define the critical curves of the
system. For simplicity, we limit the discussion to the case of
two turning points, again, generalizations are straightfor-

ward. With this restriction, the trace of M̃ becomes

tr M̃ � − 2 sgn G�0�sinh���0 + �1�� + ln 2�cos �1�

− 2 sgn G�0�cosh���0 − �1���sin �1� , �23�

where �0=�0�t1�, �1=�1�t2�, and �1=�2�T /2�. This equation
is one of the central results of this paper, as it allows for
calculating the critical curves of overdamped pendulum
equations in the nontrivial limit of large G and F.

In order to keep the treatment more concrete, we now fix
G=1 and F= f sin �t. We consider this restriction reason-
able, since it was demonstrated in Sec. III that differential

equations of the form �1� exhibit the same structure as long
as F ,G have the appropriate symmetry. Thus, we can choose
any such forcing as a representative of the class of equations
we are considering. Further, this choice has particular rel-
evance to the physical systems we have in mind.

Interestingly, with this choice, Eq. �21� becomes the
Mathieu equation. In addition to constructions �22� and �23�,
we have the known solutions at our disposal. The trace of M̃
comes out as

tr M̃ � −
1

�
S� f2 − 2

8�2 ,
f2

16�2 ;�� . �24�

Here S=S�a ,q ; t� denotes the odd solution to the canonical
form of the Mathieu equation,37 ÿ+ �a−2q cos 2t�y=0, with

the �nonstandard� initial condition Ṡ�0�=1. The quantity tr M̃
vanishes at parameters �a ,q� for which S�t� is periodic,
whether that period was � or 2�. Values of a corresponding
to a periodic S�t� are the Mathieu characteristic values bk�q�,
k=1,2 , . . ., and thus the critical curves are described by the
equation

f2 − 2

8�2 = bk� f2

16�2�, k = 1,2, . . . . �25�

In addition to Eq. �25�, which can be used to calculate

the parameters for which tr M̃ vanishes, for practical appli-

cations we also need a way of computing tr M̃ for any given
�f ,��. Equation �24� is not well suited for this purpose since
it requires the use of Mathieu functions with arbitrary param-
eters. Equation �23�, on the other hand, has a more tractable
form as it only requires the use of elliptic integrals

tr M̃ = − 2 sinh�Re	E�f2�

�

+ ln 2�cos
Im	E�f2�


�

− 2 sin
Im	E�f2�


�
, �26�

where E is the complete elliptic integral of the second kind.37

In Fig. 4 we have plotted the critical curves as given by
Eq. �25� together with the correct numerically obtained ones.
For comparison, we have included a high-frequency approxi-
mation to the critical lines, J0�f /��=0, where J0 is the
Bessel J function of order zero.22 The lines, where f /�
equals a root of J0, are only in modest agreement for low
frequencies, but improve as � is increased. Our new result,
Eq. �25�, is, on the other hand, in very good agreement for
low frequencies and is accurate also in the opposite case of
��1, especially for large f . Although not plotted, the con-

dition tr M̃ =0 with M̃ given by Eq. �26� also provides a very
good agreement to the computed critical curves.

A quantity that will often be needed is the average of
G cos �, where � is the stable solution. Using Eqs. �10� and
�13� we find the following equation that allows us to express

�G cos �� simply in terms of tr M̃ as

�G cos �� = 2�B0� =
2

T
�arcsinh�tr M̃/2�� . �27�
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In summary, the main result of this section is Eq. �23�,
whose roots give the critical curves for F ,G that are either
large or depend slowly on time, obey symmetry �3�, and have
exactly two distinct points t1 , t2 such that F�t1,2�=�G�t1,2�.
For the case of constant G and sinusoidal F, our three main
results are �i� that interestingly the nonlinear equation re-
duces to the Mathieu equation; �ii� the Mathieu limit in turn
allows us to write the critical curves of the system using the
Mathieu characteristic values, with excellent agreement with
the numerical data; and �iii� Eq. �26� enables us to compute

tr M̃, and consequently also �cos �� �Eq. �27��, in the limit of
slow external drive. This last result will be used in Sec. V.

V. APPLICATIONS TO PHYSICAL SYSTEMS

In this section we touch upon three physical problems to
which the theory developed above can be directly applied:
rectification of microwaves in lateral semiconductor
superlattices,11,12 amplification of high-frequency signals in
Josephson point contacts, and modeling of Josephson junc-
tions with critical current modulation.38

A. Semiconductor superlattices

We present the problem in the form it was introduced in
Ref. 12. A schematic figure showing the geometry of the
problem is given in Fig. 5. Plane electromagnetic wave inci-
dent on a lateral superlattice is considered. Electric field is
polarized along the superlattice axis, that is, parallel to the
direction of the current. The electron transport is studied by
considering a single miniband with the standard tight-
binding energy-quasimomentum dispersion relation.40 The
electron distribution follows the Boltzmann transport equa-
tion. From there, one is able to write ordinary differential
equations for ensemble averaged electron velocity and en-
ergy. These form the well-known superlattice balance
equations.39,40 We present the equations here in their scaled
form, in which the maximum �minimum� electron velocity v

and energy w correspond to the value of +1 �
1�. Electric
field inside the superlattice, denoted as u, is also appropri-
ately scaled,

v̇ = − uw − �v , �28a�

ẇ = uv − ��w − weq� . �28b�

The first equation of the set describes the balance between
electron acceleration by the electric field and deceleration
due to scattering, while the second describes the electron
energy gain and dissipation due to scattering processes. The
current density j is related to the average velocity v by
j�eNsv, where e is the elementary charge and Ns is the areal
density of two-dimensional �2D� electron gas. The nonlinear-
ity is controlled by the parameter �: �� �� /Ns�1/2, where � is
rate of electron scattering—a high density of the electron gas
corresponds to a large nonlinearity or small �. Constant weq

is the scaled equilibrium energy, whose value we set to 
1
for convenience.

The interaction of the incident electromagnetic radiation
with the conduction electrons is taken into account by em-
ploying the Maxwell equations with appropriate boundary
conditions. Approximating the lateral superlattice as an infi-
nite conduction sheet, the scaled electric field entering the
equations u becomes11

u = − u0 cos �t − �−1v , �29�

where u0 and � are the amplitude and frequency of the ex-
ternal electric field. With the above coupling of u and v, Eq.
�28� is rendered nonlinear. Unlike in the case of bulk super-
lattices where the relation between the total electric field u
and the average velocity v is an additional differential
equation,8,41 here the equation is algebraic.

The overdamped pendulum equation is obtained via a
formal change in variables, v=−A sin �, w=−A cos �. In the
physically interesting limit of ��1, the dimensionality of
the system can be reduced �see Appendix B�. The following
equation for � is obtained:

�̇ + � �cos ��
�

+
�

�cos ���sin � = u0 cos �t . �30�

One of the primary interests is the appearance of a spon-
taneous dc voltage. The term rectification was used for the

n = 0 n = 1 n = 2 ...
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FIG. 4. Critical curves as functions of the parameters f ,�. Shaded regions
indicate numerically found solutions of Eq. �6� �G�t�=1, F�t�= f sin �t� for
which ���=�. Critical curves given by Eq. �25� are plotted with solid lines
for k=1. . .15. Dashed lines define the first ten Bessel roots �J0�f /��=0�,
which are for clarity shown only for �� f−1.
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j , E

FIG. 5. Schematic figure showing the ac-driven lateral superlattice. Electro-
magnetic wave is incident normal to the plane of 2D gas of conduction
electrons. Electric field of the wave E� �t� induces the current density j��t�
flowing perpendicular to the superlattice layers. Along the direction of the
current electrons experience a periodic potential with period a.
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conversion of applied ac irradiation into a dc field �u��0
and current �j�� �v��0 via the nonlinearity of these nano-
structures. In terms of the variables A ,�, a prerequisite for
such a current to appear is that a limit cycle does not follow
Eq. �3�, i.e., ��t+T /2��−��t�+2k�. However, since the
governing equations are in fact symmetric in the sense of Eq.
�3�, and based on the findings of Sec. III B, the breaking of
symmetry implies a PB. Consequently, rectification is ex-
pected in the real physical system when parameters are such
that they correspond to the exchange of stability in the over-
damped pendulum.

In the earlier work,12 we have considered a simplified
pendulum equation in which the contribution of �cos �� was
ignored, that is the overdamped pendulum equation �1� with
G=1 and F�t�=u0 cos �t. Our analytic analysis of that equa-
tion in Ref. 12 was limited to the high driving frequency
limit where the instability occurs in the vicinity of
J0�u0 /��=0 �cf. Fig. 4�. Comparing with the results of nu-
merical solutions of the superlattice balance equations, we
observed that the rectification indeed exists nearby the
Bessel roots. Here we apply the theory developed in Secs. III
and IV to Eq. �30� in order to find the regions of instability in
a wider parameter space, including the case of low driving
frequencies.

We can solve the functional-differential equation �30� by

considering the equation �̇+K sin �=u0 cos �t. We require
that K equals the coefficient of sine in Eq. �30�,

K =
�cos ���K�

�
+

�

�cos ���K�
. �31�

Equation �27� allows us to write �cos �� in terms of tr M̃,

and further, Eq. �26� gives tr M̃ using well-known special
functions. Thus, roots of Eq. �31� can be easily computed
numerically.

Alternatively, parameter space structure of Eq. �30� can
be studied by the following way. We introduce a simple
change in variables �f ,��→ �u0 ,��: �u0 ,��= �A�−1

+A−1�� · �f ,��, where A= �cos ���f ,��=2�B0�f ,��� can be
found following Eq. �27�. Using this transformation, param-
eter space structure of Eq. �30� in variables �u0 ,�� can be
studied for any � by calculating a single dataset of values
�f ,� ,B0�f ,��� from the pendulum equation �1� with G=1
and F�t�= f cos �t. For the case of �=0.2 this procedure was
applied to plot Fig. 6, where branches of the solutions with
n=1, . . . ,8 are displayed. The pendulum limit of the super-
lattice balance equations �Eq. �30�� becomes invalid as
�cos ����, and thus we have chosen not to plot regions
corresponding to �cos ��
�. In the case of the simple over-
damped pendulum, the position of, say, the nth parameter
space region of solutions is determined solely by the external
drive amplitude and frequency �Fig. 4�. In Eq. �30� the aver-
age cosine affects values of �u0 ,�� that admit a solution
corresponding to a particular n. Account of the �cos �� de-
pendence has the effect of shifting the parameter space
points corresponding to high values of �cos �� to the higher
values of u, which can be seen from the change in variables
�f ,��→ �u0 ,��. For sufficiently low �, this shift is enough

to make several regions with different n coexisting at fixed
�u0 ,��. The overlap of the different regions of solutions can
be seen in Fig. 6.

Comparing with Fig. 2 of Ref. 12, we find that the
branches n=2,3 ,4 match the symmetry broken regions
found using direct numerical simulation of the superlattice
balance equations.42 Branch n=1 in Fig. 6 falls under the
branch n=0 �not plotted�, which suggests that a symmetry
broken region might have been missed in the earlier work.
Indeed, our subsequent numerical simulations confirm that
there is a region of symmetry broken solutions associated
with the instability between regions n=0 and n=1. It appar-
ently was not detected because the initial conditions pre-
ferred the n=0 solution. This immediately demonstrates the
usefulness of our analytic results.

The abstract theory developed in Sec. III gives addi-
tional insight into the dynamics of semiconductor superlat-
tice electrons. In Sec. III we showed that the integer n was
connected to the number of rotations of �, and consequently
oscillations of periodic functions depending on �: in short, n
counts the number of full oscillations of sin � and cos �
across half the period of the drive. Since here sin � and cos �
correspond to the average electron velocity and energy, re-
spectively, we can now connect the dynamics of the charge
carriers in the periodic potential to the stability of the system.
At the instability the integer n changes by one, and so the
instability, in fact, marks the region where the state with n
+1 oscillations of energy or current becomes favorable to the
state with n oscillations. Further, each of the branches
n=0,1 , . . . is characterized by the number of current oscilla-
tions across half of the drive period.

In summary, the theory developed in Secs. III and IV
devoted to the mathematical analysis of Eq. �1� allowed us to
analytically probe the dynamics of Eqs. �28� in the physi-
cally interesting limit of ��1, ��1. This limit is equivalent
to very high nonlinearity and has been largely inaccessibly
analytically. Importantly, the analytical results revealed the
significant multistability in this system. We found that sev-
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FIG. 6. Parameter space of Eq. �30� found for �=0.2 employing the
asymptotic solutions discussed in Sec. IV. Shading is used to distinguish
different branches of solutions; white areas correspond to no valid solution
��cos ��
�� or branch other than 1, . . . ,8.
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eral branches of solutions can coexist at same parameters
�u0 ,��. The analytical results also directly suggested that a
large region of rectification was missed. The region of recti-
fication was found to be much larger than expected in the
case of �=0.2. Our new analytical findings are also consis-
tent with the previous result that ��0.4 is required for ob-
serving rectification.

B. Josephson junctions

As a second application, we consider the problem of a
high-frequency gain �negative absorption� in microwave ir-
radiated Josephson point contacts. The corresponding motion
equation for the Josephson phase difference � is20,21

�̇ + sin � = f sin �t + � cos �t . �32�

In addition to the driving current f sin �t, a probe current
Ip=� cos �t has been added. The probe amplitude � is as-
sumed small and the frequency � is incommensurate to the
drive �.

Having introduced a weak probe current Ip, we wish to
find the power absorbed by the junction and its dependence
on the frequency of Ip. The absorbed power is described by
A= �U · Ip�, where U is the voltage across the junction. In
terms of pendulum variables the absorption takes the form

AJJ=���̇�t� · sin �t�. For AJJ
0 we have gain, i.e., a weak
signal � sin �t will be amplified. The system placed in a
cavity will radiate at frequencies for which AJJ
0. Linear-
izing Eq. �32� and using the approach similar to Ref. 19, we
find

AJJ =
�2

2 �
k=−�

�

b−kdk
�2

�2 + ��cos �� + 2ik��2 , �33�

where

e��0
t �cos ��t��−�cos ���dt� = �

k=−�

�

e2ik�t�bk

dk
� . �34�

Derivation of Eq. �33� is presented in Appendix C.
Near exchange of stability, �cos ��=2�B0�→0, the ex-

pression for absorption consists of terms of the form 1 / ��2

−4k2�2�. These diverge when �→2k� �k is an integer�, and
thus we expect to see strong gain for probe frequencies near
an even multiple of the pump frequency when B0�0.

Again, results in Sec. IV can be applied to find �f ,��
that result in such strong response. The range of parameters
where gain occurs is rather narrow, and hence an analytic
first approximation is useful. In Fig. 7 we plot the regions of
negative absorption using Eq. �33� together with the critical
curves, as given by Eq. �26�. Coefficients bk, dk were com-
puted numerically from the Floquet solutions using the fact

that the expansions in Eq. �34� are equal to �aP̃TP̃��1 �cf.

Appendix C�, where P̃ is oscillating part of the unstable Flo-

quet solution and a= �P̃�0�TP̃�0��−1. We also made several
runs computing AJJ directly from Eq. �32�. While this direct
procedure is, in general, slower, its results are in good agree-
ment with the results obtained employing Eqs. �33� and �34�.

To illustrate the strong dependence of the absorption on
the parameters we have also plotted typical absorption pro-
files, dependence of AJJ on �, in the inset of Fig. 7: the
profile forms strong peaks just as the critical curve for ex-
change of stability is approached. Gain peaks are located in
the vicinities of even harmonics 2k� of the driving current.
Therefore, the system can radiate at frequencies close to
2k�. This effect is very different from ordinary generation of
harmonics. Really, following symmetry �3� overdamped pen-
dulum can generate only odd harmonics �2k+1�� of the
strong pump while even harmonics are forbidden. From
physical point of view, generation at �exactly� odd harmonics
is a spontaneous process, whereas radiation at frequencies
nearby even harmonics is stimulated emission. From the
viewpoint of bifurcations, the effect of gain in overdamped
pendulum represents a reminiscent of symmetry breaking bi-
furcation in strongly damped second order pendulum equa-
tion �4�, where the bifurcation results in appearance of even
harmonics. Despite here even harmonics are forbidden by
symmetry, nontrivial amplification of additional weak signal
does exist at pump amplitudes and frequencies close to those
necessary to realize real symmetry breaking.

Interestingly, similar gain profiles, centered near a char-
acteristic Bloch or cyclotron frequency and its harmonics,
attract much attention in physics of semiconductor superlat-
tices, where they are termed dispersive gain profiles.43,44

Moreover, the dispersive gain profiles were found in the
models of ac-driven semiconductor superlattices as well.45,46

Recently, relatively strong coherent electromagnetic ra-
diation of technologically important terahertz frequency
band has been observed from dc-driven high-Tc super-
conductors47 and arrays of niobium point contacts.48 Physical
mechanisms responsible for the observed radiation are still
subject of intensive debates. Nevertheless, we notice that our
simple model of a pure ac-driven junction gives a natural
framework to generalization of dc-drive configurations con-
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FIG. 7. Regions of negative absorption computed from Eq. �33�. Shaded
regions correspond to negative absorption for some probe frequency in the
range �=0. . .11.5·�. Solid lines indicate exchange of stability as given by
Eq. �26�. Points labeled �a� and �b� indicate parameters for the absorption
profiles in the inset. Inset: typical absorption profiles for low pump frequen-
cies. Solid and dashed curves correspond to points �a� f =1.5, �=0.149 and
�b� f =1.57, �=0.13, respectively.
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sidered experimentally, and in this respect a further develop-
ment of this theory may have a beneficial applied aspect.

Finally, as a separate remark, we note that the general
form of Eq. �1� with G�t��const and the associated symme-
try do have relevance to more complex models of Josephson
junctions. Recently, a pendulum equation was used to
model observed current-voltage characteristics of a type of
Josephson junction with a strong applied microwave field.38

The magnetic field induced changes to the critical current
were considered significant enough to be incorporated into
the model. The resulting equation has, in the low-frequency
drive case, a form corresponding to Eq. �1� and, in the ab-
sence of a dc current component, also the symmetry consid-
ered in current paper.

VI. CONCLUSIONS

We have studied the periodically driven overdamped Eq.
�1� with periodic coefficients by using a type of Prüfer trans-
formation. The linear form equation �6� allowed for easy
analysis of the nonlinear system. We showed that if the sys-
tem is driven by external forcing of the form equation �2�,
there exists only one type of instability in the system. The
instability was identified as an exchange of stability between
two periodic solutions, and it was found to be essentially a
degenerate form of a PB. We showed that the degeneracy of
the bifurcation is lifted when additional terms that also fol-
low the symmetry are added, thus proving that the exchange
of stability is in a way a precursor to symmetry breaking
bifurcations in realistic physical systems. Also, we found that
near the exchange of stability, the overdamped pendulum
responds strongly to perturbations whose frequency is close
to an even multiple of the drive frequency. We further used
the linear form to find explicit solutions to the problem, and
used them to construct a condition for the appearance of the
instability. For the simple choice of F�t�= f sin �t, G�t�=1
the instabilities of Eq. �1� can be well described by the
Mathieu equation. We wish to emphasize that up to the
knowledge of the authors, no such low-frequency solutions
have been constructed so far.

From our purely mathematical findings there is then a
natural crossover into the field of physics. As was shown,
near exchange of stability even weak perturbations can gen-
erate symmetry breaking bifurcations or other types of strong
response. Thus, regions close to this bifurcation in real
physical systems are expected to show novel phenomena. We
applied our methods directly to the real physical problems,
namely, rectification of pure ac irradiation in lateral semicon-
ductor superlattices and amplification of a weak signal in
Josephson point contacts.

For lateral semiconductor superlattices, making use of
our analytical methods, we were able to construct the param-
eter and phase space structure of this system. Excellent
agreement was found with our previous numerical results12

with the additional finding that the system exhibits strong
multistability: parameter space consists of overlapping re-
gions each carrying a solution that is characterized by the
extent of oscillations of the electron gas average energy and
velocity. Each of these regions was found to have an associ-

ated region of instability which in the low frequency drive
and strong nonlinearity limit corresponds to rectification of
the incident ac electric field—that is, the effect where the
nonlinear interaction between the 2D electron gas and the
external ac field generates a directed current and voltage
across the superlattice. The analytical results revealed the
complex way in which the multistability and the related re-
gions of instability appear, and suggested that large regions
of rectification were missed in earlier simulations. In fact,
rectification persists for higher frequencies than was previ-
ously thought. The new results supported the earlier finding
that fairly high electron mobilities are required for rectifica-
tion to appear.

The second physical system that we considered was am-
plification of a weak signal in Josephson point contacts. We
found �i� a direct and striking correspondence between gain,
that is, negative absorption and the exchange of stability
bifurcation—strong gain was shown to appear in a narrow
region just around the point where loss of stability occurs,
when also the weak signal frequency was close to an even
multiple of the strong ac driving current. Second, �ii� our
analytical results make it possible to find the regions of gain
very accurately, or allow for computing them with little cost.
Further, �iii� our findings on the dynamics of overdamped
pendulum suggest insight into the physical process of
amplification—the overdamped pendulum exhibits only odd
harmonics which follows from the constraints set by the
symmetry; yet, we found that the system is expected to radi-
ate when the weak signal to be amplified is tuned to even
harmonics.

Finally, we would like to point out intriguing similarities
between gain profiles found here in the model of ac-driven
Josephson junction �ac-driven overdamped pendulum� and
dispersive gain profiles recently described in the models of
ac-driven bulk �not lateral� semiconductor superlattices in
Refs. 45 and 46. In these works,45,46 a superlattice is in es-
sence modeled by two standard balance equations for elec-
tron velocity and miniband energy,39 that is, Eq. �28� without
v dependence in u. Taking into account some earlier
findings,10 we speculate that bifurcations of overdamped
pendulum also determine conditions for high-frequency gain
in ac-driven bulk superlattices, described by the standard bal-
ance equations, in the limits of high frequencies and rare
collisions. A detailed comparison of properties of amplifica-
tion in ac-driven Josephson junctions with the properties of
dispersive gain in ac-driven semiconductor superlattices45,46

in the limit of weak dissipation, however, goes beyond the
scope of the present paper.
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APPENDIX A: CONSTRUCTION OF THE ASYMPTOTIC
SOLUTION

Here we briefly outline how the approximate asymptotic
solution of Eq. �6� is constructed using asymptotic solutions
of Eq. �21�. Without loss of generality we can assume that
R�t=0�
0. The interval t=0¯T /2 is divided into subinter-
vals Ij = �tj , tj+1� where tj, j=1¯N, is a turning point and N
is the total number of turning points. We additionally set
t0=0 and tN+1=T /2. Solutions on each of the intervals are
approximately given by the usual WKB �Wentzel–Kramers–
Brillouin� solutions,

y2k�t� =
A2ke

��2k�t� + 1
2B2ke

−��2k�t�

�− R�t��1/4 , �A1a�

y2k+1�t� =
A2k+1

R�t�1/4sin���2k+1�t� +
�

4
�

+
B2k+1

R�t�1/4cos���2k+1�t� +
�

4
� , �A1b�

�k�t� = 

tk

t

��R�t���dt�. �A1c�

Each of the above solutions yk is only valid in its correspond-
ing interval Ik—when R�t�
0, solutions have the exponen-
tial form y2k, and when R�t��0, the oscillatory form y2k+1 is
the appropriate solution �cf. harmonic oscillator ÿ+ry=0, r
real, solutions oscillate for r�0 and converge or diverge
exponentially when r
0�.

Connection formulas for the coefficients Ck= �Ak ,Bk�T

can be derived by solving the problem at the turning points.

For first order zeros of R�t�, i.e., roots t� such that Ṙ�t���0,
the approximate solutions xk around t= tk are given in terms
of the Airy functions Ai, Bi as

xk = Ak
���̇k�−1Ai��2/3�k� + Bk

���̇k�−1Bi��2/3�k� , �A2�

with

�k = �3

2



tk

t

�− R�t���1/2dt��2/3

, �A3�

where Ak
�, Bk

� are constants. Note that above we need to raise
a complex number z to power 2/3, where z is either real or
pure imaginary. Here, the argument of z2/3 is chosen to be 0
or �, i.e., so that �k is real. Doing so it follows that if R�t� is
increasing �decreasing� around tk, then �k�t�, �k�tk�=0, is
continuous and decreasing �increasing� around tk. Away from
the turning points the functions xk asymptote into the WKB
solutions given in Eq. �A1�. This allows one to write a linear
relationship between Ck and Ck+1: Ck+1=WkCk, where

W2k = �2 exp��2k�� 0

0 1
2exp�− �2k�� � , �A4a�

W2k−1 = �cos �2k−1� − sin �2k−1�

sin �2k−1� cos �2k−1�
� . �A4b�

Here, �2k−1=�2k−1�t2k� and �2k=�2k�t2k+1�. Denoting
Y�t�= �y�t� , ẏ�t��T, we wish to construct a matrix V so that
Y�T /2�=V ·Y�0�. Above we have derived connection formu-
las for the superposition coefficients Ck across the whole
interval 0¯T /2, so all we need are matrices that map the
initial values of Y, Y�0�, to the coefficients C0, and the last
coefficients CN to the end values Y�T /2�. In other words, we
need S0 and S1 so that C0=S0 ·Y�0� and Y�T /2�=S1 ·CN. Us-
ing Eq. �A1a�, �y0�0� , ẏ0�0��T can be written in terms of the
coefficients C0= �A0 ,B0�T. After solving �A0 ,B0� the matrix
S0 can be read out. Similarly, using the same equation and
writing out �yN�T /2� , ẏN�T /2��T, the coefficient matrix S1 is
found. We obtain

S0 =�
1

2
r0 −

r1

8�r0
5

1

2�r0

r0 +
r1

4�r0
5 −

1

�r0

� , �A5a�

S1 =� �
1

r0

1

�

1

2r0

���r0 +
r1

4r0
5� 1

�
�−

�r0

2
+

r1

8r0
5� � , �A5b�

where r0= �R�0��1/4, r1= Ṙ�0�, and �=exp���N�.
Using Eqs. �A1� and �A4� the solution at t=T /2 can be

obtained in terms of the initial values y�0� , ẏ�0�,

Y�T/2� = S1WN−1WN−2 ¯ W0S0Y�0� . �A6�

Finally, to get the value of Q at t=T /2, Eq. �A6� is applied
with the initial conditions

Y�0� = �q1�0�
q̇1�0�

�, Y�0� = �q2�0�
q̇2�0�

� �A7�

to get q1�T /2� and q2�T /2�, respectively.

APPENDIX B: OVERDAMPED PENDULUM LIMIT
OF LATERAL SUPERLATTICE BALANCE EQUATIONS

In this appendix we present the derivation of Eq. �30�.
We start with the superlattice balance equations, Eq. �28�,
with an electric field following Eq. �29�,

v̇ = − �uin�t� − �−1v�w − �v , �B1a�

ẇ = �uin�t� − �−1v�v − ��w − weq� . �B1b�

Here, v ,w are average electron velocity and energy
scaled to dimensionless units and into range −1¯1, uin is
the scaled incident electric field which is taken to be of the
form uin=−u0 cos �t. For details we refer the reader to
Ref. 12.

The pendulum form is obtained by making the substitu-
tions v=−A sin �, w=−A cos �. From Eqs. �B1� we get dif-
ferential equations for A ,�,
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Ȧ = − �A − weq� cos � , �B2a�

�̇ = − �A

�
− weq

�

A
�sin � − uin�t� . �B2b�

We are interested in the case ��1. It follows that since

Ȧ��, we may consider A a slow variable. Provided that
��� we can say that to a first approximation A is constant
over one cycle of the drive field T, T=2� /�. Taking the
average of Eq. �B2a� we get A�−weq�cos ��. Finally, setting
weq=−1 for simplicity and substituting A→ �cos �� into
Eq. �B2b� we get Eq. �30�.

APPENDIX C: DERIVATION OF FORMULA
FOR JOSEPHSON JUNCTION ABSORPTION

We begin by linearizing Eq. �32� in �: setting �→�
+��, we get

�̇� + cos ��� = � cos �t , �C1�

where � follows Eq. �32� with �=0. The above has the exact
solution

�� = �e−�0
t cos ��t��dt�


−�

t

e�0
t�cos ��t��dt�cos �t�dt�. �C2�

We note that since the periodic solutions � are symmetric,
��t+T /2�=−��t�+2k�, then cos � is T /2-periodic. Thus, we
rewrite the exponentials appearing in �� as a Fourier series
with only even harmonics of �. This gives Eq. �34�. Using
these expansions and denoting �cos ��= for brevity, ��
becomes

�� = ��
k,k�

bke
i2�kte− t
 dk�e

 tei2�k�t cos �tdt

= ��
n

�
k

bn−kdke
i2�nt

!
� + 2ik��cos �t + � sin �t

�2 + � + 2ik��2 . �C3�

Next, we calculate AJJ. Since cos �t harmonic is not present

in �, AJJ becomes ��cos �t · �̇��. By partial integration, we
get AJJ=���sin �t ·���. The averaging then simply picks
from �� the coefficient of e2in�t sin �t, n=0, divided by two.
Upon inspection of Eq. �C3�, Eq. �33� follows.

Finally, we note that the expressions in Eq. �34� are

equal to �aP̃TP̃��1 where a= �P̃�0�TP̃�0��−1. This follows
from the fact that

e�0
t G�t��cos ��t��dt� = a�Q�t�TQ�t� , �C4�

where Q is any solution to Eq. �6�, �=C�Q�, and a�
= �Q�0�TQ�0��−1. The above can be verified by a straightfor-
ward calculation of the logarithmic derivative of QTQ. Spe-

cifically, for the unstable Floquet solution �=exp��B0�t�P̃ we
then have

e�0
t G�t��cos ��t��dt� = ae2�B0�tP̃�t�TP̃�t� . �C5�

Using Eq. �27� the claim follows.
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