3,916 research outputs found
Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves
A method is presented for solving the characteristic initial value problem
for the collision and subsequent nonlinear interaction of plane gravitational
or gravitational and electromagnetic waves in a Minkowski background. This
method generalizes the monodromy transform approach to fields with nonanalytic
behaviour on the characteristics inherent to waves with distinct wave fronts.
The crux of the method is in a reformulation of the main nonlinear symmetry
reduced field equations as linear integral equations whose solutions are
determined by generalized (``dynamical'') monodromy data which evolve from data
specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe
Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem
We consider the collisions of plane gravitational and electromagnetic waves
with distinct wavefronts and of arbitrary polarizations in a Minkowski
background. We first present a new, completely geometric formulation of the
characteristic initial value problem for solutions in the wave interaction
region for which initial data are those associated with the approaching waves.
We present also a general approach to the solution of this problem which
enables us in principle to construct solutions in terms of the specified
initial data. This is achieved by re-formulating the nonlinear dynamical
equations for waves in terms of an associated linear problem on the spectral
plane. A system of linear integral ``evolution'' equations which solve this
spectral problem for specified initial data is constructed. It is then
demonstrated explicitly how various colliding plane wave space-times can be
constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and
Quantum Gravit
Infinite hierarchies of exact solutions of the Einstein and Einstein-Maxwell equations for interacting waves and inhomogeneous cosmologies
For space-times with two spacelike isometries, we present infinite
hierarchies of exact solutions of the Einstein and Einstein--Maxwell equations
as represented by their Ernst potentials. This hierarchy contains three
arbitrary rational functions of an auxiliary complex parameter. They are
constructed using the so called `monodromy transform' approach and our new
method for the solution of the linear singular integral equation form of the
reduced Einstein equations. The solutions presented, which describe
inhomogeneous cosmological models or gravitational and electromagnetic waves
and their interactions, include a number of important known solutions as
particular cases.Comment: 7 pages, minor correction and reduction to conform with published
versio
Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory
Integrable structure of the symmetry reduced dynamics of massless bosonic
sector of the heterotic string effective action is presented. For string
background equations that govern in the space-time of dimensions ()
the dynamics of interacting gravitational, dilaton, antisymmetric tensor and
any number of Abelian vector gauge fields, all depending only on two
coordinates, we construct an \emph{equivalent} matrix
spectral problem (). This spectral problem provides the base for the
development of various solution constructing procedures (dressing
transformations, integral equation methods). For the case of the absence of
Abelian gauge fields, we present the soliton generating transformations of any
background with interacting gravitational, dilaton and the second rank
antisymmetric tensor fields. This new soliton generating procedure is available
for constructing of various types of field configurations including stationary
axisymmetric fields, interacting plane, cylindrical or some other types of
waves and cosmological solutions.Comment: 4 pages; added new section on Belinski-Zakharov solitons and new
expressions for calculation of the conformal factor; corrected typo
Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
For the fields depending on two of the four space-time coordinates only, the
spaces of local solutions of various integrable reductions of Einstein's field
equations are shown to be the subspaces of the spaces of local solutions of the
``null-curvature'' equations constricted by a requirement of a universal (i.e.
solution independent) structures of the canonical Jordan forms of the unknown
matrix variables. These spaces of solutions of the ``null-curvature'' equations
can be parametrized by a finite sets of free functional parameters -- arbitrary
holomorphic (in some local domains) functions of the spectral parameter which
can be interpreted as the monodromy data on the spectral plane of the
fundamental solutions of associated linear systems. Direct and inverse problems
of such mapping (``monodromy transform''), i.e. the problem of finding of the
monodromy data for any local solution of the ``null-curvature'' equations with
given canonical forms, as well as the existence and uniqueness of such solution
for arbitrarily chosen monodromy data are shown to be solvable unambiguously.
The linear singular integral equations solving the inverse problems and the
explicit forms of the monodromy data corresponding to the spaces of solutions
of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction
A note on a canonical dynamical r-matrix
It is well known that a classical dynamical -matrix can be associated with
every finite-dimensional self-dual Lie algebra \G by the definition
, where \omega\in \G and is the
holomorphic function given by for
z\in \C\setminus 2\pi i \Z^*. We present a new, direct proof of the statement
that this canonical -matrix satisfies the modified classical dynamical
Yang-Baxter equation on \G.Comment: 17 pages, LaTeX2
The embedding structure and the shift operator of the U(1) lattice current algebra
The structure of block-spin embeddings of the U(1) lattice current algebra is
described. For an odd number of lattice sites, the inner realizations of the
shift automorphism areclassified. We present a particular inner shift operator
which admits a factorization involving quantum dilogarithms analogous to the
results of Faddeev and Volkov.Comment: 14 pages, Plain TeX; typos and a terminological mishap corrected;
version to appear in Lett.Math.Phy
- …