11,115 research outputs found

    High-growth-rate magnetohydrodynamic instability in differentially rotating compressible flow

    Full text link
    The transport of angular momentum in the outward direction is the fundamental requirement for accretion to proceed in an accretion disc. This objective can be achieved if the accretion flow is turbulent. Instabilities are one of the sources for the turbulence. We study a differentially rotating compressive flow in the presence of non vanishing radial and azimuthal magnetic field and demonstrate the occurrence of a high growth rate instability. This instability operates in a region where magnetic energy density exceeds the rotational energy density

    Theory of double resonance magnetometers based on atomic alignment

    Get PDF
    We present a theoretical study of the spectra produced by optical-radio-frequency double resonance devices, in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta, arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light intensity. The results are discussed in view of their use in optical magnetometers

    Efficient Data Averaging for Spin Noise Spectroscopy in Semiconductors

    Full text link
    Spin noise spectroscopy (SNS) is the perfect tool to investigate electron spin dynamics in semiconductors at thermal equilibrium. We simulate SNS measurements and show that ultrafast digitizers with low bit depth enable sensitive, high bandwidth SNS in the presence of strong optical background shot noise. The simulations reveal that optimized input load at the digitizer is crucial for efficient spin noise detection while the bit depth influences the sensitivity rather weakly

    Noise spectroscopy and interlayer phase-coherence in bilayer quantum Hall systems

    Full text link
    Bilayer quantum Hall systems develop strong interlayer phase-coherence when the distance between layers is comparable to the typical distance between electrons within a layer. The phase-coherent state has until now been investigated primarily via transport measurements. We argue here that interlayer current and charge-imbalance noise studies in these systems will be able to address some of the key experimental questions. We show that the characteristic frequency of current-noise is that of the zero wavevector collective mode, which is sensitive to the degree of order in the system. Local electric potential noise measured in a plane above the bilayer system on the other hand is sensitive to finite-wavevector collective modes and hence to the soft-magnetoroton picture of the order-disorder phase transition.Comment: 5 pages, 2 figure

    Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization

    Full text link
    Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to be directly detected despite significant experimental effort. Previous attempts have made use of large liquid-helium cooled electromagnets which inadvertently generate spurious signals that mask the desired signal. We present a novel approach for the ultra-sensitive detection of optical birefringence that can be usefully applied to a laboratory detection of vacuum polarization. The new technique has a predicted birefringence measurement sensitivity of Δn1020\Delta n \sim 10^{20} in a 1 second measurement. When combined with the extreme polarizing fields achievable in this design we predict that a vacuum polarization signal will be seen in a measurement of just a few days in duration.Comment: 9 pages, 2 figures. submitted to PR

    Skin effect with arbitrary specularity in Maxwellian plasma

    Full text link
    The problem of skin effect with arbitrary specularity in maxwellian plasma with specular--diffuse boundary conditions is solved. A new analytical method is developed that makes it possible to to obtain a solution up to an arbitrary degree of accuracy. The method is based on the idea of symmetric continuation not only the electric field, but also electron distribution function. The solution is obtained in a form of von Neumann series.Comment: 7 pages, 2 figure

    Light diffraction by a strong standing electromagnetic wave

    Full text link
    The nonlinear quantum interaction of a linearly polarized x-ray probe beam with a focused intense standing laser wave is studied theoretically. Because of the tight focusing of the standing laser pulse, diffraction effects arise for the probe beam as opposed to the corresponding plane wave scenario. A quantitative estimate for realistic experimental conditions of the ellipticity and the rotation of the main polarization plane acquired by the x-ray probe after the interaction shows that the implementation of such vacuum effects is feasible with future X-ray Free Electron Laser light.Comment: 5 pages, 2 figures. Published versio

    Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    Full text link
    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the important steps in the derivatio

    Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    Get PDF
    Photo-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diameter is smaller, and they branch more frequently. Additionally, they move more in a zigzag fashion and sometimes exhibit a feathery structure. In our simulations, we test the relative importance of photo-ionization and of the background ionization from pulsed repetitive discharges, in air as well as in nitrogen with 1 ppm O2 . We also test reasonable parameter changes of the photo-ionization model. We find that photo- ionization dominates streamer propagation in air for repetition frequencies of at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition frequency has to be included above 1 Hz. Finally, we explain the feather-like structures around streamer channels that are observed in experiments in nitrogen with high purity, but not in air.Comment: 12 figure

    Photon splitting in a laser field

    Full text link
    Photon splitting due to vacuum polarization in a laser field is considered. Using an operator technique, we derive the amplitudes for arbitrary strength, spectral content and polarization of the laser field. The case of a monochromatic circularly polarized laser field is studied in detail and the amplitudes are obtained as three-fold integrals. The asymptotic behavior of the amplitudes for various limits of interest are investigated also in the case of a linearly polarized laser field. Using the obtained results, the possibility of experimental observation of the process is discussed.Comment: 31 pages, 4 figure
    corecore