13 research outputs found

    Epigenetic regulation of antigen receptor gene rearrangement

    Get PDF
    V(D)J recombination assembles antigen-specific immunoglobulin and T-cell receptor variable region genes from germline V, D, and J segments during lymphocyte development. Regulation of this site-specific DNA rearrangement process occurs with respect to the cell type and stage of differentiation, order of locus recombination, and allele usage. Many of these controls are mediated via the modulation of gene accessibility to the V(D)J recombinase. Here, we summarise recent advances regarding the impact of nuclear organisation and epigenetic-based mechanisms on the regulation of V(D)J recombination

    Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP) assays in using in vitro methylated genomic DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation contributes to the regulation of gene expression during development and cellular differentiation. The recently developed Methylated DNA ImmunoPrecipitation (MeDIP) assay allows a comprehensive analysis of this epigenetic mark at the genomic level in normal and disease-derived cells. However, estimating the efficiency of the MeDIP technique is difficult without previous knowledge of the methylation status of a given cell population. Attempts to circumvent this problem have involved the use of <it>in vitro </it>methylated DNA in parallel to the investigated samples. Taking advantage of this stratagem, we sought to improve the sensitivity of the approach and to assess potential biases resulting from DNA amplification and hybridization procedures using MeDIP samples.</p> <p>Findings</p> <p>We performed MeDIP assays using <it>in vitro </it>methylated DNA, with or without previous DNA amplification, and hybridization to a human promoter array. We observed that CpG content at gene promoters indeed correlates strongly with the MeDIP signal obtained using <it>in vitro </it>methylated DNA, even when lowering significantly the amount of starting material. In analyzing MeDIP products that were subjected to whole genome amplification (WGA), we also revealed a strong bias against CpG-rich promoters during this amplification procedure, which may potentially affect the significance of the resulting data.</p> <p>Conclusion</p> <p>We illustrate the use of <it>in vitro </it>methylated DNA to assess the efficiency and accuracy of MeDIP procedures. We report that efficient and reproducible genome-wide data can be obtained via MeDIP experiments using relatively low amount of starting genomic DNA; and emphasize for the precaution that must be taken in data analysis when an additional DNA amplification step is required.</p

    Le paysage épigénétique de la lympho-hématopoïèse normale et pathologique : les relations entre la signature chromatinienne et l'expression génique régulée d'une manière tissue spécifique

    No full text
    La régulation transcriptionelle fine assurée par les Eléments Cis Régulateurs (ECR, eg. promoteurs et «enhancers») et les facteurs protéiques associés, est à la base de la mise en place et le maintien de l'identité tissulaire. Les modifications de la chromatine corrèlent avec l’activité d’ECRs et constituent l’épigénome de la cellule. Au cours de ma thèse, je me suis intéressée aux transitions des modifications des histones (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2) accompagnant le développement précoce de la cellule T. Pour cela, j’ai utilisé un modèle murin reproduisant une étape cruciale de la thymopoïèse - la sélection β - et la technique d’Immunoprecipitation de la chromatine couplée à des puces à ADN (ChIP-chip). Au sein des enhancer connus, nos analyses ont mis en évidence une nouvelle signature épigénétique liée à leur activité. De plus, nous montrons que l'étendue d'enrichissement d’H3K4me2 au sein des régions géniques des gènes exprimés, constitue une signature épigénétique des gènes tissus spécifiques. Tout ceci a permis de mieux comprendre le rôle de l’épigénétique dans l'établissement et le maintien de l'identité cellulaire.Le traitement anti-cancer moderne est basé sur les analyses de différents marqueurs d'agressivité (MA) et par la suite, de l’établissement de la thérapie personnalisée. Durant la dernière partie de ma thèse, j’ai participé à un projet collaboratif avec le laboratoire de Thérapie Cellulaire de l’Institut Paoli Calmettes à Marseille, qui visait l’isolation des MA des Leucémies Aiguës Myéloïdes à caryotype normal (LMAcn) grâce aux études de profilage épigénétique (H3K27me3) des blastes des patients atteints de LMAcn.Precise transcriptional regulation underlies the establishment and maintenance of cell type specific identity and is governed by dedicated DNA sequences (i.e., cis regulatory elements (CREs): eg.: promoters, enhancers) and transcription factors. Chromatin modifications (eg.: histone modifications, DNA methylation) impinge on CREs activity and constitute the epigenome of the cell.During my PhD, I was interested in the transitions of a set of histone modifications (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2), during one of the major checkpoints of thymopoiesis - the β-selection. I used a dedicated mouse model and Chromatin Immunoprecipitation coupled with microarrays (ChIP-chip) technique. Our data evidenced a previously unappreciated epigenetic signature linked to enhancer activity. In parallel, computational analyses of the patterns of gene body enrichment of H3K4me2 highlighted an epigenetic signature linked to the regulation of the tissue specific gene expression. Altogether, this enabled to deepen the relationship between chromatin states and regulation of cell type specific identity.Modern anticancer treatment is based on the analyses of a number of cancer aggressiveness markers (CAM) and results in a highly personalized therapy. Epigenetic profiling can constitute a powerful tool for CAM’s isolation. In the second part of the presented work, I participate in a collaborative project (with Cellular Therapy Centre at the Paoli Calmettes Institut, Marseille) aiming to isolate new CAM for Acute Myeloid Leukemia with normal karyotype (AMLnc) patients. For this purpose I performed epigenetic (H3K27me3) profiling of blasts of AMLnc

    Le paysage épigénétique de la lympho-hématopoïèse normale et pathologique (les relations entre la signature chromatinienne et l'expression génique régulée d'une manière tissue spécifique)

    No full text
    La régulation transcriptionelle fine assurée par les Eléments Cis Régulateurs (ECR, eg. promoteurs et enhancers ) et les facteurs protéiques associés, est à la base de la mise en place et le maintien de l'identité tissulaire. Les modifications de la chromatine corrèlent avec l activité d ECRs et constituent l épigénome de la cellule. Au cours de ma thèse, je me suis intéressée aux transitions des modifications des histones (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2) accompagnant le développement précoce de la cellule T. Pour cela, j ai utilisé un modèle murin reproduisant une étape cruciale de la thymopoïèse - la sélection b - et la technique d Immunoprecipitation de la chromatine couplée à des puces à ADN (ChIP-chip). Au sein des enhancer connus, nos analyses ont mis en évidence une nouvelle signature épigénétique liée à leur activité. De plus, nous montrons que l'étendue d'enrichissement d H3K4me2 au sein des régions géniques des gènes exprimés, constitue une signature épigénétique des gènes tissus spécifiques. Tout ceci a permis de mieux comprendre le rôle de l épigénétique dans l'établissement et le maintien de l'identité cellulaire.Le traitement anti-cancer moderne est basé sur les analyses de différents marqueurs d'agressivité (MA) et par la suite, de l établissement de la thérapie personnalisée. Durant la dernière partie de ma thèse, j ai participé à un projet collaboratif avec le laboratoire de Thérapie Cellulaire de l Institut Paoli Calmettes à Marseille, qui visait l isolation des MA des Leucémies Aiguës Myéloïdes à caryotype normal (LMAcn) grâce aux études de profilage épigénétique (H3K27me3) des blastes des patients atteints de LMAcn.Precise transcriptional regulation underlies the establishment and maintenance of cell type specific identity and is governed by dedicated DNA sequences (i.e., cis regulatory elements (CREs): eg.: promoters, enhancers) and transcription factors. Chromatin modifications (eg.: histone modifications, DNA methylation) impinge on CREs activity and constitute the epigenome of the cell.During my PhD, I was interested in the transitions of a set of histone modifications (H3K4me1/me2/me3, H3K36me3, H3K27me3 and H3K9me2), during one of the major checkpoints of thymopoiesis - the b-selection. I used a dedicated mouse model and Chromatin Immunoprecipitation coupled with microarrays (ChIP-chip) technique. Our data evidenced a previously unappreciated epigenetic signature linked to enhancer activity. In parallel, computational analyses of the patterns of gene body enrichment of H3K4me2 highlighted an epigenetic signature linked to the regulation of the tissue specific gene expression. Altogether, this enabled to deepen the relationship between chromatin states and regulation of cell type specific identity.Modern anticancer treatment is based on the analyses of a number of cancer aggressiveness markers (CAM) and results in a highly personalized therapy. Epigenetic profiling can constitute a powerful tool for CAM s isolation. In the second part of the presented work, I participate in a collaborative project (with Cellular Therapy Centre at the Paoli Calmettes Institut, Marseille) aiming to isolate new CAM for Acute Myeloid Leukemia with normal karyotype (AMLnc) patients. For this purpose I performed epigenetic (H3K27me3) profiling of blasts of AMLnc.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    A unique H3K4me2 profile marks tissue-specific gene regulation

    No full text
    Characterization of the epigenetic landscape fundamentally contributes toward deciphering the regulatory mechanisms that govern gene expression. However, despite an increasing flow of newly generated data, no clear pattern of chromatin modifications has so far been linked to specific modes of transcriptional regulation. Here, we used high-throughput genomic data from CD4+ T lymphocytes to provide a comprehensive analysis of histone H3 lysine 4 dimethylation (H3K4me2) enrichment in genomic regions surrounding transcriptional start sites (TSSs). We discovered that a subgroup of genes linked to T cell functions displayed high levels of H3K4me2 within their gene body, in sharp contrast to the TSS-centered profile typical of housekeeping genes. Analysis of additional chromatin modifications and DNase I hypersensitive sites (DHSS) revealed a combinatorial chromatin signature characteristic of this subgroup. We propose that this epigenetic feature reflects the activity of an as yet unrecognized, intragenic cis-regulatory platform dedicated to refining tissue-specificity in gene expression

    Epigenetic control of Tcrb gene rearrangement.

    No full text
    International audienceV(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated

    Two independent modes of chromatin organization revealed by cohesin removal

    No full text
    International audienceImaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes

    Two independent modes of chromatin organization revealed by cohesin removal

    No full text
    Imaging and chromosome conformation capture studies have revealed several layers of chromosome organization, including segregation into megabase-sized active and inactive compartments, and partitioning into sub-megabase domains (TADs). It remains unclear, however, how these layers of organization form, interact with one another and influence genome function. Here we show that deletion of the cohesin-loading factor Nipbl in mouse liver leads to a marked reorganization of chromosomal folding. TADs and associated Hi-C peaks vanish globally, even in the absence of transcriptional changes. By contrast, compartmental segregation is preserved and even reinforced. Strikingly, the disappearance of TADs unmasks a finer compartment structure that accurately reflects the underlying epigenetic landscape. These observations demonstrate that the three-dimensional organization of the genome results from the interplay of two independent mechanisms: cohesin-independent segregation of the genome into fine-scale compartments, defined by chromatin state; and cohesin-dependent formation of TADs, possibly by loop extrusion, which helps to guide distant enhancers to their target genes.National Institutes of Health (Grant R01-GM114190, U54-DK107980)National Science Foundation (Grant 1504942
    corecore