20 research outputs found

    Acoustic properties of macrophytes: Comparison of single-beam and multibeam imaging with modeling results

    Get PDF

    Acoustic properties of macrophytes: Comparison of single-beam and multibeam imaging with modeling results

    Get PDF

    Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen) using acoustic imaging

    Get PDF
    AbstractThe identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2area comprised within a 12.40 km2euphotic zone was mapped along the fjord’s coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES) proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES) was very useful in extending the SBES survey range, even though it’s ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2) of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%). These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.</jats:p

    Tidal inlet seafloor changes induced by recently built hard structures

    Get PDF
    Tidal inlets are extremely dynamic environments that are often strongly modified by anthropogenic intervention. In this study, we describe the rapid evolution of a highly humanimpacted tidal inlet, studied through repeated high-resolution multibeam surveys and geomorphometric analysis. We document the rapid change induced by new hard coastal structures built to protect the historical city of Venice (Italy). A new breakwater erected between 2011 and 2013 induced the formation of large scour holes with the consequent erosion of about 170 x 103 ± 15.6% m3 of sediment until 2016. The construction of a new island in the middle of the inlet and the restriction of the inlet channel caused a general change of the inlet sedimentary regime from depositional to erosive with a net sediment loss of about 612 x 103 ± 42.7% m3, a reduction of the dune field area by more than 50% in about five years, and a coarsening in the sediment distribution. Our results give new insight on the tidal inlet resilience to changes, distinguishing two different phases in its recent evolution: (i) a very rapid response (from 2011 to 2013) of the seafloor morphology with scour-hole erosion at the new breakwater tips at a rate of about 45x103 m3/year and the disappearing of dune fields at a rate of 104x103 m2/year; and (ii) a general slowdown of the erosive processes from 2013 to 2016. Nevertheless, the erosion continues at the breakwater, though at a reduced rate, possibly representing a threat to the hard structure. In view of global mean sea level rise and consequent proliferation of hard structures along the coast all over the world, the combined use of very high resolution multibeam surveys and repeatable geomorphometric analysis proposed in this study will be crucial for the monitoring and future management of coastal environments

    Measurement of Seafloor Acoustic Backscatter Angular Dependence at 150 kHz Using a Multibeam Echosounder

    Get PDF
    Acoustic seafloor measurements with multibeam echosounders (MBESs) are currently often used for submarine habitat mapping, but the MBESs are usually not acoustically calibrated for backscattering strength (BBS) and cannot be used to infer absolute seafloor angular dependence. We present a study outlining the calibration and showing absolute backscattering strength values measured at a frequency of 150 kHz at around 10–20 m water depth. After recording bathymetry, the co-registered backscattering strength was corrected for true incidence and footprint reverberation area on a rough and tilted seafloor. Finally, absolute backscattering strength angular response curves (ARCs) for several seafloor types were constructed after applying sonar backscattering strength calibration and specific water column absorption for 150 kHz correction. Thus, we inferred specific 150 kHz angular backscattering responses that can discriminate among very fine sand, sandy gravel, and gravelly sand, as well as between bare boulders and boulders partially overgrown by red algae, which was validated by video ground-truthing. In addition, we provide backscatter mosaics using our algorithm (BBS-Coder) to correct the angle varying gain (AVG). The results of the work are compared and discussed with the published results of BBS measurements in the 100–400 kHz frequency range. The presented results are valuable in extending the very sparse angular response curves gathered so far and could contribute to a better understanding of the dependence of backscattering on the type of bottom habitat and improve their acoustic classificatio

    Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats – application to the Venice Lagoon, Italy

    Get PDF
    Recent technological developments of multibeam echosounder systems (MBES) allow mapping of benthic habitats with unprecedented detail. MBES can now be employed in extremely shallow waters, challenging data acquisition (as these instruments were often designed for deeper waters) and data interpretation (honed on datasets with resolution sometimes orders of magnitude lower). With extremely high-resolution bathymetry and colocated backscatter data, it is now possible to map the spatial distribution of fine scale benthic habitats, even identifying the acoustic signatures of single sponges. In this context, it isnecessary to understand which of the commonly used segmentation methods is best suited to account for such level of detail. At the same time, new sampling protocols for precisely georeferenced ground truth data need to be developed to validate the benthic environmental classification. This study focuses on a dataset collected in a shallow (2–10 m deep) tidal channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a range of classifications, both pixel- based and object-based approaches, including manual, Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and ObjectBased Image Analysis. Through a comprehensive and accurately geo-referenced ground truth dataset, we were able to identify five different classes of the substrate composition, including sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User and Producer Accuracies) by cross tabulating predicted and reference instances. Overall, pixel based segmentations produced the highest accuracies and that the accuracy assessment is strongly dependent on the choice of classes for the segmentation. Tidal channels in the Venice Lagoon are extremely important in terms of habitats and sediment distribution, particularly within the context of the new tidal barrier being built. However, they had remained largely unexplored until now, because of the surveying challenges. The application of this remote sensing approach, combined with targeted sampling, opens a new perspective in the monitoring of benthic habitats in view of a knowledge-based management of natural resources in shallow coastal areas

    Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line

    Get PDF
    During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ?5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 ?mol photons m?2 s?1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m?2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ?5 to 30 m water depth exhibited variable rates of net production from ?19 to +40 mg O2 m?2 h?1 (?168 to +360 mg C m?2 day?1) and gross production of about 2–62 mg O2 m?2 h?1 (17–554 mg C m?2 day?1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos

    High-frequency acoustics of marine vegetation – Role of frequencies and imaging angles

    Get PDF
    Marine vegetation is extremely varied and an essential component of shallow-water habitats. This paper will present two independent strands of work, using a variety of high-frequency acoustic sources to image macrophytes for different purposes. The first series of studies focuses on gas-filled kelp Nereocystis luetkeana, a seaweed ranging along the west coast of North America from California to Alaska, and is an important component of its diverse coastal ecosystems. As part of an investigation into grey whale habitats, we havemeasured propagation and attenuation through kelp beds of different densities, using broadband (1-20 kHz) white noise (Wladichuk, 2010, and other works). These field measurements in British Columbia (Canada) were compared with Monte Carlo simulations of sound propagation through kelp beds of increasing densities. The second series of measurements (started in Kruss et al., 2007 and continued through to Kruss et al., 2017) looked at gas-free macrophytes in shallow polar habitats; namely Saccharina latissima (L.) and Laminaria digitata (Huds.) in Svalbard fjords. These were mapped with traditional single-beam echo-sounders (such as the Biosonics DTX, 420 kHz) and with multibeam echosounders (such as the Imagenex 837 Delta-T, 260 kHz), investigating the ranges of angles at which macrophytes could be reliably mapped and what signal processing approaches were the most adapted. These two types of work are combined to show how they can be interpreted in the light of the seminal work done by Jean-Pierre Hermand on seagrass acoustics, for example Hermand et al. (2000) and Hermand (2004), and how his scientific legacy influences future efforts in acoustic mapping of marine vegetation
    corecore