7 research outputs found

    Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of- flight mass spectrometry

    Get PDF
    Background Bloodstream infections represent serious conditions carrying a high mortality and morbidity rate. Rapid identification of microorganisms and prompt institution of adequate antimicrobial therapy is of utmost importance for a successful outcome. Aiming at the development of a rapid, simplified and efficient protocol, we developed and compared two in-house preparatory methods for the direct identification of bacteria from positive blood culture flasks (BD BACTEC FX system) by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS). Both methods employed saponin and distilled water for erythrocyte lysis. In method A the cellular pellet was overlaid with formic acid on the MALDI TOF target plate for protein extraction, whereas in method B the pellet was exposed to formic acid followed by acetonitrile prior to placing on the target plate. Results Best results were obtained by method A. Direct identification was achieved for 81.9 % and 65.8 % (50.3 % and 26.2 % with scores >2.0) of organisms by method A and method B, respectively. Overall concordance with final identification was 100 % to genus and 97.9 % to species level. By applying a lower cut-off score value, the levels of identification obtained by method A and method B increased to 89.3 % and 77.8 % of organisms (81.9 % and 65.8 % identified with scores >1.7), respectively. Using the lowered score criteria, concordance with final results was obtained for 99.3 % of genus and 96.6 % of species identifications. Conclusion The reliability of results, rapid performance (approximately 25 min) and applicability of in-house method A have contributed to implementation of this robust and cost-effective method in our laboratory

    Nationwide, population-based observational study of the molecular epidemiology and temporal trend of carbapenemase-producing Enterobacterales in Norway, 2015 to 2021

    Get PDF
    National and regional carbapenemaseproducing Enterobacterales (CPE) surveillance is essential to understand the burden of antimicrobial resistance, elucidate outbreaks, and develop infection-control or antimicrobial-treatment recommendations. Aim: This study aimed to describe CPE and their epidemiology in Norway from 2015 to 2021. Methods: A nationwide, population-based observational study of all verified clinical and carriage CPE isolates submitted to the national reference laboratory was conducted. Isolates were characterised by antimicrobial susceptibility testing, whole genome sequencing (WGS) and basic metadata. Annual CPE incidences were also estimated. Results: A total of 389 CPE isolates were identified from 332 patients of 63years median age (range:0–98). These corresponded to 341 cases, 184 (54%) being male. Between 2015 and 2021, the annual incidence of CPE cases increased from 0.6 to 1.1per 100,000person-years. For CPEisolates with available data on colonisation/infection, 58% (226/389)were associated with colonisation and 38% (149/389) with clinical infections. WGS revealed a predominance of OXA-48-like (51%; 198/389) and NDM (34%; 134/389) carbapenemases in a diversified population of Escherichia coli and Klebsiella pneumoniae, including high-risk clones also detected globally. Most CPE isolates were travel-related (63%;245/389). Although local outbreaks and healthcare-associated transmission occurred, no interregional spread was detected. Nevertheless, 18% (70/389) of isolates not directly related to import points towards potentially unidentified transmission routes. A decline in travelassociated cases was observed during the COVID-19 pandemic. Conclusions: The close-to-doubling of CPE case incidence between 2015 and 2021 was associated with foreign travel and genomic diversity. To limit further transmission and outbreaks, continued screening and monitoring is essential

    Novel genomic islands and a new vanDsubtype in the first sporadic VanD-type vancomycin resistant enterococci in Norway

    Get PDF
    Background Vancomycin-resistant enterococci (VRE) represent several types of transferable vancomycin resistance gene clusters. The vanD type, associated with moderate to high level vancomycin resistance, has only sporadically been described in clinical isolates. The aim of this study was to perform a genetic characterization of the first VanD-type VRE strains detected in Norway. Methods The VanD-type VRE-strains (n = 6) from two patient cases were examined by antimicrobial susceptibility testing and whole genome sequencing (WGS) to uncover Van-phenotype, strain phylogeny, the vanD gene clusters, and their genetic surroundings. The putative transferability of vanD was examined by circularization PCR and filter mating. Results The VanD-type Enterococcus faecium (n = 4) and Enterococcus casseliflavus (n = 2) strains recovered from two cases (A and B), expressed moderate to high level vancomycin resistance (MIC 64—>256 mg/L) and various levels of teicoplanin susceptibility (MIC 2—>256 mg/L). WGS analyses revealed phylogenetically different E. faecium strains (A1, A2, and A3 of case A and B1 from case B) as well as vanD gene clusters located on different novel genomic islands (GIs). The E. casseliflavus strains (B2 and B3 of case B) were not clonally related, but harbored nearly identical novel GIs. The vanD cluster of case B strains represents a novel vanD-subtype. All the vanD-GIs were integrated at the same chromosomal site and contained genes consistent with a Clostridiales origin. Circular forms of the vanD-GIs were detected in all strains except B1. Transfer of vanD to an E. faecium recipient was unsuccessful. Conclusions We describe the first VanD-type E. casseliflavus strains, a novel vanD-subtype, and three novel vanD-GIs with a genetic content consistent with a Clostridiales order origin. Despite temporal occurrence, case A and B E. faecium strains were phylogenetically diverse and harbored different vanD subtypes and vanD-GIs

    Phenotypic and genotypic characterisation of thymine auxotrophy in Escherichia coli isolated from a patient with recurrent bloodstream infection

    No full text
    Introduction Thymine auxotrophic in vitro mutants of Escherichia coli were first reported in the mid-20th century. Later, thymine-dependent clinical strains of E. coli as well as other Enterobacterales, Enterococcus faecalis and Staphylococcus aureus have been recognized as the cause of persistent and recurrent infections. Objectives The aim of this study was to characterize the phenotype and investigate the molecular basis of thymine auxotrophy in ten E. coli isolates obtained at different time points from a patient with recurrent bloodstream infection (BSI) due to a chronic aortic graft infection treated with Trimethoprim/sulfamethoxazole (TMP-SMX). Methods Clinical data was obtained from hospital records. Growth characterization and antimicrobial susceptibility testing to TMP-SMX was performed on M9 agar and in MH broth with different thymine concentrations (0.5, 2, 5, 10 and 20 μg/mL), on Mueller-Hinton (MH) and blood agar. Whole genome sequencing (WGS) was performed on all E. coli isolates. Results E. coli were isolated from ten consecutive BSI episodes from a patient with chronic aortic graft infection. Six of these isolates were resistant to TMP-SMX when assayed on blood agar. Growth experiments with added thymine confirmed that these isolates were thymine-dependent (thy-), and revealed growth defects (slower growth rate and smaller colony size) in these isolates relative to thy+ isolates (n = 4). WGS indicated that all isolates were of the same clonal lineage of sequence type 7358. Genomic analysis revealed a G172C substitution in thyA in all TMP-SMX resistant isolates, while mutations affecting genes involved in the deoxyribose salvage pathway (deoB and deoC) were identified in eight isolates. Conclusion This case highlights the risk of resistance development to TMP-SMX, especially for long-term treatment, and the possible pitfalls in detection of growth-deficient subpopulations from chronic infections, which could lead to treatment failure

    Phenotypic and genotypic characterisation of thymine auxotrophy in Escherichia coli isolated from a patient with recurrent bloodstream infection.

    Get PDF
    IntroductionThymine auxotrophic in vitro mutants of Escherichia coli were first reported in the mid-20th century. Later, thymine-dependent clinical strains of E. coli as well as other Enterobacterales, Enterococcus faecalis and Staphylococcus aureus have been recognized as the cause of persistent and recurrent infections.ObjectivesThe aim of this study was to characterize the phenotype and investigate the molecular basis of thymine auxotrophy in ten E. coli isolates obtained at different time points from a patient with recurrent bloodstream infection (BSI) due to a chronic aortic graft infection treated with Trimethoprim/sulfamethoxazole (TMP-SMX).MethodsClinical data was obtained from hospital records. Growth characterization and antimicrobial susceptibility testing to TMP-SMX was performed on M9 agar and in MH broth with different thymine concentrations (0.5, 2, 5, 10 and 20 μg/mL), on Mueller-Hinton (MH) and blood agar. Whole genome sequencing (WGS) was performed on all E. coli isolates.ResultsE. coli were isolated from ten consecutive BSI episodes from a patient with chronic aortic graft infection. Six of these isolates were resistant to TMP-SMX when assayed on blood agar. Growth experiments with added thymine confirmed that these isolates were thymine-dependent (thy-), and revealed growth defects (slower growth rate and smaller colony size) in these isolates relative to thy+ isolates (n = 4). WGS indicated that all isolates were of the same clonal lineage of sequence type 7358. Genomic analysis revealed a G172C substitution in thyA in all TMP-SMX resistant isolates, while mutations affecting genes involved in the deoxyribose salvage pathway (deoB and deoC) were identified in eight isolates.ConclusionThis case highlights the risk of resistance development to TMP-SMX, especially for long-term treatment, and the possible pitfalls in detection of growth-deficient subpopulations from chronic infections, which could lead to treatment failure

    Use of Sysmex UF-5000 flow cytometry in rapid diagnosis of urinary tract infection and the importance of validating carryover rates against bacterial count cut-off

    No full text
    Introduction. Urinary tract infections are common bacterial infections worldwide. Urine culture is the gold standard method to identify and quantify the presence or absence of bacteria in urine. Flow cytometry, which can differentiate and quantify multiple particles (including bacteria) in the urine, presents an alternative method for rapid screening to rule out bacteriuria. Hypothesis. Adding flow cytometry to identify urine samples without bacteriuria could substantially reduce the number of urine samples that need to be cultured as well as the response time for negative results. However, the level of instrument rinsing between samples could affect sample-to-sample carryover rate, a concept given little attention in previous studies. Aim. We aimed to evaluate urine flow cytometry as a rapid screening method to identify urine samples without significant bacterial growth, including analyses of cross-contamination and sample-to-sample carryover rate. Methodology. We analysed 3919 urine samples by quantitative urine culture and flow cytometry screening (Sysmex UF-5000). Receiver operator characteristic (ROC) curve analyses were used to test method agreement to identify: (a) positive vs. negative culture and (b) mixed vs. pure culture. In addition, we performed carryover and cross-contamination studies. Results. ROC curve analyses identified bacterial count (BACT ml−1) and leucocyte count (WBC µl−1) as possible predictors of bacterial growth in the total material and subpopulations, except pregnant women (n=451). This subgroup was excluded from further analyses, leaving a final 3468 urine samples. Area under the ROC curve was 0.94 (95% CI 0.93–0.95) and 0.81 (95% CI 0.79–0.82) for bacterial and leucocyte count, respectively. A bacterial count cut-off of 30 BACT ml−1 resulted in 95.2% sensitivity and 91.2% negative predictive value, resulting in approximately 30% of urine samples that could be reported as negative without culture. Use of high-level rinse modes was necessary to ensure carryover rates <0.05%. Conclusion. Flow cytometry is a suitable and rapid method to rule out urine samples without significant bacterial growth. Rinses between samples should be adjusted, depending on the cut-off used, to prevent sample-to-sample carryover, whereas cross-contamination can be eliminated by the use of separate urine aliquots for flow cytometry analysis and urine culturing respectivel
    corecore