26 research outputs found

    Complexity of the Genetic Background of Oncogenesis in Ovarian Cancer—Genetic Instability and Clinical Implications

    No full text
    Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53’s pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations’ significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery

    The Influence of Cold Atmospheric Pressure Plasma-Treated Media on the Cell Viability, Motility, and Induction of Apoptosis in Human Non-Metastatic (MCF7) and Metastatic (MDA-MB-231) Breast Cancer Cell Lines

    No full text
    Breast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients’ death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP. Prepared media were exposed to the CAPP treatment at seven different time intervals and examined in respect of their impact on cell viability and motility, and the induction of the apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. As a control, the influence of CAPP-activated media on the viability and motility, and the type of the cell death of the non-cancerous human normal MCF10A cell line, was estimated. Additionally, qualitative and quantitative analyses of the reactive oxygen and nitrogen species (RONS), generated during the CAPP operation in contact with analyzed media, were performed. Based on the conducted research, it was found that 180 s (media activation time by CAPP) should be considered as the minimal toxic dose, which significantly decreases the cell viability and the migration of MDA-MB-231 cells, and also disturbs life processes of MCF7 cells. Finally, CAPP-activated media led to the apoptosis of analyzed cell lines, especially of the metastatic MDA-MB-231 cell line. Therefore, the application of the CAPP system may be potentially applied as a therapeutic strategy for the management of highly metastatic human breast cancer

    Pulse-Modulated Radio-Frequency Alternating-Current-Driven Atmospheric-Pressure Glow Discharge for Continuous-Flow Synthesis of Silver Nanoparticles and Evaluation of Their Cytotoxicity toward Human Melanoma Cells

    No full text
    An innovative and environmentally friendly method for the synthesis of size-controlled silver nanoparticles (AgNPs) is presented. Pectin-stabilized AgNPs were synthesized in a plasma-reaction system in which pulse-modulated radio-frequency atmospheric-pressure glow discharge (pm-rf-APGD) was operated in contact with a flowing liquid electrode. The use of pm-rf-APGD allows for better control of the size of AgNPs and their stability and monodispersity. AgNPs synthesized under defined operating conditions exhibited average sizes of 41.62 ± 12.08 nm and 10.38 ± 4.56 nm, as determined by dynamic light scattering and transmission electron microscopy (TEM), respectively. Energy-dispersive X-ray spectroscopy (EDS) confirmed that the nanoparticles were composed of metallic Ag. Furthermore, the ξ-potential of the AgNPs was shown to be −43.11 ± 0.96 mV, which will facilitate their application in biological systems. Between 70% and 90% of the cancerous cells of the human melanoma Hs 294T cell line underwent necrosis following treatment with the synthesized AgNPs. Furthermore, optical emission spectrometry (OES) identified reactive species, such as NO, NH, N2, O, and H, as pm-rf-APGD produced compounds that may be involved in the reduction of the Ag(I) ions

    Activation of the Normal Human Skin Cells by a Portable Dielectric Barrier Discharge-Based Reaction-Discharge System of a Defined Gas Temperature

    No full text
    International audienceSkin injury leading to chronic wounds is of high interest due to the increasing number of patients suffering from this symptom. Proliferation, migration, and angiogenesis are key factors in the wound healing processes. For that reason, controlled promotion of these processes is required. In this work, we present the portable helium-dielectric barrier discharge (He-DBD)-based reaction-discharge system of controlled gas temperature for biological activities. To make this He-DBD-based reaction-discharge system safe for biological purposes, a multivariate optimization of the operating parameters was performed. To evaluate the effect of the He-DBD operating parameters on the rotational gas temperature T rot (OH), a design of experiment followed by a Response Surface Methodology was applied. Based on the suggested statistical model, the optimal operating conditions under which the T rot (OH) is less than 37 °C (310 K) were estimated. Then, the resulted model was validated in order to confirm its accuracy. After estimation the optical operating conditions of He-DBD operation, the spectroscopic characteristic of the He-DBD-based reaction-discharge system in relevance to the several optical temperatures in addition to electron number density has been carried out. Additionally, the qualitative and quantitative analyses of the reactive oxygen species and reactive nitrogen species were performed in order to investigate of reactions and processes running in the He-DBD-gaseous phase and in the He-DBD-treated liquid. Next, the developed portable He-DBD-based reaction-discharge system, working under the optimal operating conditions, was used to stimulate the wound healing process. It was found that a 30 s He-DBD treatment significantly increased the proliferation, migration, and angiogenesis of keratinocytes (HaCaT) and fibroblasts (MSU-1.1) cell lines, as well as human skin microvascular endothelial cells (HSkMEC.2). Hence, the application of the cold atmospheric pressure plasma generated in this He-DBD-based reaction-discharge system might be an alternative therapy for patient suffering from chronic wounds

    Increased Endothelial Progenitor Cell Number in Early Stage of Endometrial Cancer

    No full text
    International audienceObjectives: It is generally believed that circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) reflect the state of the endothelium, its injury and/or repair possibilities. In different types of cancers, increased numbers of CECs and EPCs were found, suggesting their participation in cancer angiogenesis. The objective of this study was to determine whether, in the blood circulation of women with early endometrial cancer, CEC and EPC levels differ from those of healthy women of similar age.Methods: For CEC number evaluation, samples of peripheral blood cells of women with endometrial carcinoma and control subjects were labeled with anti-CD31 and anti-CD45 antibodies; for EPCs, with anti-VEGFR2(vascular-endotheliumgrowth factor receptor 2)/KDR and anti-CD34 antibodies. The CEC and EPC cells were then quantified by flow cytometry.Results: Endothelial progenitor cell numbers (CD34(+), VEGFR2/KDR+) in the peripheral blood of women with endometrial carcinoma were significantly augmented as compared with those of control healthy women and CEC numbers (CD31(+), CD45(-)) were similar in both groups. Cancer patients were divided according to the grading into G1 and G2 groups and according to the stage into International Federation of Gynecology and Obstetrics (FIGO) stage IA and FIGO IB groups. Statistically significant augmented EPC numbers were demonstrated only in G1 and FIGO IA patients.$Conclusions: These results strongly suggest new vessel formation from recruited endothelial precursors as being involved mainly at the early stages of tumor progression

    HATMSC Secreted Factors in the Hydrogel as a Potential Treatment for Chronic Wounds—In Vitro Study

    No full text
    Mesenchymal stem cells (MSCs) can improve chronic wound healing; however, recent studies suggest that the therapeutic effect of MSCs is mediated mainly through the growth factors and cytokines secreted by these cells, referred to as the MSC secretome. To overcome difficulties related to the translation of cell therapy into clinical use such as efficacy, safety and cost, we propose a hydrogel loaded with a secretome from the recently established human adipose tissue mesenchymal stem cell line (HATMSC2) as a potential treatment for chronic wounds. Biocompatibility and biological activity of hydrogel-released HATMSC2 supernatant were investigated in vitro by assessing the proliferation and metabolic activity of human fibroblast, endothelial cells and keratinocytes. Hydrogel degradation was measured using hydroxyproline assay while protein released from the hydrogel was assessed by interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) ELISAs. Pro-angiogenic activity of the developed treatment was assessed by tube formation assay while the presence of pro-angiogenic miRNAs in the HATMSC2 supernatant was investigated using real-time RT-PCR. The results demonstrated that the therapeutic effect of the HATMSC2-produced factors is maintained following incorporation into collagen hydrogel as confirmed by increased proliferation of skin-origin cells and improved angiogenic properties of endothelial cells. In addition, HATMSC2 supernatant revealed antimicrobial activity, and which therefore, in combination with the hydrogel has a potential to be used as advanced wound-healing dressing

    Activity of the human immortalized endothelial progenitor cell line HEPC-CB.1 supporting in vitro angiogenesis.

    No full text
    International audienceThe human HEPC-CB.1 cell line with many characteristics of endothelial progenitor cells (EPC) was tested for its proangiogenic properties as a potentially therapeutic compound. HEPC-CB.1 cells' potential to differentiate into endothelial cells was revealed after treating the cells with a mixture of ATRA, cAMP and VEGF, as shown by the reduced expression levels of CD133, CD271 and CD90 antigens, augmentation of CD146 and CD31, and a decrease in cell clonogenicity. The cooperation of HEPC-CB.1 with the endothelial cell line HSkMEC.2 resulted in the formation of a common network. Tube formation was significantly more effective when resulting from HEPC-CB.1 and HSkMEC.2 cell co-culture as compared to a monoculture of each cell line. The exocrine mechanism of HEPC-CB.1 and HSkMEC.2 cross talk by secreted factors was evidenced using the HEPC-CB.1 supernatant to increase the efficacy of HSkMEC.2 tube formation. The proangiogenic factors produced by HEPC-CB.1 were identified using cytokine antibody array. Out of 120 examined factors, the HEPC-CB.1 cell line produced 63, some with known angiogenic activity. As in vivo the angiogenic process occurs at low oxygen tension, it was observed that in hypoxia, the production of defined factors was augmented. The presented results demonstrate that HEPC-CB.1 cells are able to both cooperate and integrate in a newly formed network and produce factors that help the network formation. The results suggest that HEPC-CB.1 cells are indeed endothelial progenitors and may prove to be an effective tool in regenerative medicine

    Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: A challenging correlation.

    No full text
    Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific

    From Primary MSC Culture of Adipose Tissue to Immortalized Cell Line Producing Cytokines for Potential Use in Regenerative Medicine Therapy or Immunotherapy

    No full text
    For twenty-five years, attempts have been made to use MSCs in the treatment of various diseases due to their regenerative and immunomodulatory properties. However, the results are not satisfactory. Assuming that MSCs can be replaced in some therapies by the active factors they produce, the immortalized MSCs line was established from human adipose tissue (HATMSC1) to produce conditioned media and test its regenerative potential in vitro in terms of possible clinical application. The production of biologically active factors by primary MSCs was lower compared to the HATMSC1 cell line and several factors were produced only by the cell line. It has been shown that an HATMSC1-conditioned medium increases the proliferation of various cell types, augments the adhesion of cells and improves endothelial cell function. It was found that hypoxia during culture resulted in an augmentation in the pro-angiogenic factors production, such as VEGF, IL-8, Angiogenin and MCP-1. The immunomodulatory factors caused an increase in the production of GM-CSF, IL-5, IL-6, MCP-1, RANTES and IL-8. These data suggest that these factors, produced under different culture conditions, could be used for different medical conditions, such as in regenerative medicine, when an increased concentration of pro-angiogenic factors may be beneficial, or in inflammatory diseases with conditioned media with a high concentration of immunomodulatory factors
    corecore