8 research outputs found

    Attitudes Towards Body Organ Transplantation

    Get PDF
    The authors present the outcomes of a study on attitudes towards donation of one’s own body organs to others in case of potential donor’s clinical death after an accident. The results showed that life organs (e.g. lungs, liver) are more willingly donated than peripheral ones (e.g. fingers, eyes). Some personal values are positively related to this readiness, whereas religiosity negatively. Further research ideas are proposed

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Determination of gamma angular distribution from the shape of spectral line for the first excited state of carbon nucleus

    No full text
    An experiment investigating gamma emission in hadron therapy was performed at Cyclotron Centre Bronowice (CCB), Cracow, Poland, using two different phantom materials—carbon and poly(methyl methacrylate) PMMA. The measurements were carried out at 70 MeV proton beam energy and the gamma quanta were registered with the use of HP Ge detector with scintillation anti-Compton shielding. Although the primary aim was to establish a solid experimental data base for future applications in prompt gamma imaging, the data have also been analyzed with regards to the position and shape of the spectral line stemming from deexcitation of the carbon excited state 4.44 MeV. Measurements potentially useful to determine the cross section were performed only at 90° laboratory polar angle. However, benefiting from the very good energy resolution it turned out possible to extract information on angular distribution of the C* (4.44 MeV) deexcitation by analyzing the associated line shape. This paper presents the scheme of model calculations assuming the whole process can be divided into two stages: excitation of carbon nuclei by impinging protons and deexcitation of the C* (4.44 MeV) state

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore