13 research outputs found

    Low-Frequency Vibration Sensor with a Sub-nm Sensitivity Using a Bidomain Lithium Niobate Crystal

    No full text
    We present a low-frequency sensor for the detection of vibrations, with a sub-nm amplitude, based on a cantilever made of a single-crystalline lithium niobate (LiNbO3) plate, with a bidomain ferroelectric structure. The sensitivity of the sensor-to-sinusoidal vibrational excitations was measured in terms of displacement as well as of acceleration amplitude. We show a linear behavior of the response, with the vibrational displacement amplitude in the entire studied frequency range up to 150 Hz. The sensitivity of the developed sensor varies from minimum values of 20 μV/nm and 7 V/g (where g = 9.81 m/s2 is the gravitational acceleration), at a frequency of 23 Hz, to peak values of 92.5 mV/nm and 2443 V/g, at the mechanical resonance of the cantilever at 97.25 Hz. The smallest detectable vibration depended on the excitation frequency and varied from 100 nm, at 7 Hz, to 0.1 nm, at frequencies above 38 Hz. Sensors using bidomain lithium niobate single crystals, as sensitive elements, are promising for the detection of ultra-weak low-frequency vibrations in a wide temperature range and in harsh environments

    Magnetoelectric effect in three-layered gradient LiNbO3/Ni/Metglas composites

    Get PDF
    The effect of annealing in a permanent magnetic field on the magnitude of magnetoelectric coefficient in three-layered gradient magnetoelectric LiNbO3/Ni/Metglas composites has been studied. A method of electrochemical nickel deposition on bidomain lithium niobate crystals has been demonstrated. We show that the optimum annealing temperature in a permanent magnetic field for the generation of the highest remanence in the Ni layer is 350 °C. The specimens annealed at this temperature exhibit the greatest shift of the magnetoelectric coefficient dependence on external magnetic field magnitude relative to the value Hdc = 0. The quasi-static magnetoelectric coefficient in the absence of an external magnetic field proves to be 1.2 V/(cm ∙ Oe). The highest magnetoelectric coefficient that has been achieved at a bending structure resonance frequency of 278 Hz proves to be 199.3 V/(cm ∙ Oe) without application of an external magnetic field. The experimental magnetoelectric coefficient figures for three-layered gradient LiNbO3/Ni/Metglas composites are not inferior to those for most magnetoelectric composite materials reported earlier

    Detection of inhomogeneous magnetic fields using magnetoelectric composites

    No full text
    Magnetoelectric (ME) composites have a wide range of possible applications, especially as room-temperature sensors of weak magnetic fields in magnetocardiography and magnetoencephalography medical diagnostic equipment. In most works on ME composites, structures are tested in uniform magnetic fields; however, for practical application, detailed knowledge of their behaviour in inhomogeneous magnetic fields (IMFs) is necessary. In this work, we measured IMFs with radial symmetry produced by alternate currents (AC) passing through an individual thin wire upon different placements of an ME sensor. An ME self-biased b-LN/Ni/Metglas structure with a sensitivity to the magnetic field of 120 V/T was created for IMF detection. The necessity of an external biasing magnetic field was avoided by the inclusion of a nickel layer having remanent magnetization. The ME composite shows a non-zero ME coefficient of 0.24 V/(cm · Oe) in the absence of an external DC magnetic field. It is shown that the output voltage amplitude from the ME composite, which is located in an AC IMF, is dependent on the relative position of the investigated sample and magnetic field lines. Maximum ME signal is obtained when the long side of the ME sample is perpendicular to the wire, and the symmetry plane which divides the long side into two similar pieces contains the wire axis. In the frequency range from 400 Hz to 1000 Hz in the absence of vibrational and other noises, the detection limit amounts to (2 ± 0.4) nT/Hz1/2

    Detection of inhomogeneous magnetic fields using magnetoelectric composites

    No full text
    Magnetoelectric (ME) composites have a wide range of possible applications, especially as room-temperature sensors of weak magnetic fields in magnetocardiography and magnetoencephalography medical diagnostic equipment. In most works on ME composites, structures are tested in uniform magnetic fields; however, for practical application, detailed knowledge of their behaviour in inhomogeneous magnetic fields (IMFs) is necessary. In this work, we measured IMFs with radial symmetry produced by alternate currents (AC) passing through an individual thin wire upon different placements of an ME sensor. An ME self-biased b-LN/Ni/Metglas structure with a sensitivity to the magnetic field of 120 V/T was created for IMF detection. The necessity of an external biasing magnetic field was avoided by the inclusion of a nickel layer having remanent magnetization. The ME composite shows a non-zero ME coefficient of 0.24 V/(cm · Oe) in the absence of an external DC magnetic field. It is shown that the output voltage amplitude from the ME composite, which is located in an AC IMF, is dependent on the relative position of the investigated sample and magnetic field lines. Maximum ME signal is obtained when the long side of the ME sample is perpendicular to the wire, and the symmetry plane which divides the long side into two similar pieces contains the wire axis. In the frequency range from 400 Hz to 1000 Hz in the absence of vibrational and other noises, the detection limit amounts to (2 ± 0.4) nT/Hz1/2

    Synthesis of silicon-carbon films by induction-assisted plasma-chemical deposition

    No full text
    Silicon-carbon films are of great interest as diamond-like materials combining unique properties, e.g. high hardness, adhesion to a wide range of materials, abrasion resistance, chemical resistance, low friction coefficient and biocompatibility. The presence of silicon in the films significantly reduces their inner mechanical stress as compared to diamond films. Currently, the films are used in industry, primarily, as solid lubricants and protective coatings. There are a large number of silicon-carbon film synthesis methods the most widely used of which are various options of chemical vapor deposition. A new silicon-carbon film synthesis technique has been suggested and tested. The technique is based on the use of high-frequency induction for obtaining plasma of silicon and carbon vapors supplied to the reaction chamber from an external source. Impurity-free silicon-carbon films containing 63–65 % carbon atoms with sp3 orbital hybridization have been synthesized on Sitall substrates. The composition, surface roughness and friction coefficient of the impurity-free silicon-carbon films synthesized using the suggested technology have been studied. The possibility of implementing resistive switching in thin silicon-carbon films in cross-bar structures with metallic electrodes has been analyzed

    Synthesis of silicon-carbon films by induction-assisted plasma-chemical deposition

    No full text
    Silicon-carbon films are of great interest as diamond-like materials combining unique properties, e.g. high hardness, adhesion to a wide range of materials, abrasion resistance, chemical resistance, low friction coefficient and biocompatibility. The presence of silicon in the films significantly reduces their inner mechanical stress as compared to diamond films. Currently, the films are used in industry, primarily, as solid lubricants and protective coatings. There are a large number of silicon-carbon film synthesis methods the most widely used of which are various options of chemical vapor deposition. A new silicon-carbon film synthesis technique has been suggested and tested. The technique is based on the use of high-frequency induction for obtaining plasma of silicon and carbon vapors supplied to the reaction chamber from an external source. Impurity-free silicon-carbon films containing 63–65 % carbon atoms with sp3 orbital hybridization have been synthesized on Sitall substrates. The composition, surface roughness and friction coefficient of the impurity-free silicon-carbon films synthesized using the suggested technology have been studied. The possibility of implementing resistive switching in thin silicon-carbon films in cross-bar structures with metallic electrodes has been analyzed

    Magnetoelectric MEMS Magnetic Field Sensor Based on a Laminated Heterostructure of Bidomain Lithium Niobate and Metglas

    No full text
    Non-contact mapping of magnetic fields produced by the human heart muscle requires the application of arrays of miniature and highly sensitive magnetic field sensors. In this article, we describe a MEMS technology of laminated magnetoelectric heterostructures comprising a thin piezoelectric lithium niobate single crystal and a film of magnetostrictive metglas. In the former, a ferroelectric bidomain structure is created using a technique developed by the authors. A cantilever is formed by microblasting inside the lithium niobate crystal. Metglas layers are deposited by magnetron sputtering. The quality of the metglas layers was assessed by XPS depth profiling and TEM. Detailed measurements of the magnetoelectric effect in the quasistatic and dynamic modes were performed. The magnetoelectric coefficient |α32| reaches a value of 492 V/(cm·Oe) at bending resonance. The quality factor of the structure was Q = 520. The average phase amounted to 93.4° ± 2.7° for the magnetic field amplitude ranging from 12 to 100 pT. An AC magnetic field detection limit of 12 pT at a resonance frequency of 3065 Hz was achieved which exceeds by a factor of 5 the best value for magnetoelectric MEMS lead-free composites reported in the literature. The noise level of the magnetoelectric signal was 0.47 µV/Hz1/2. Ways to improve the sensitivity of the developed sensors to the magnetic field for biomedical applications are indicated
    corecore