761 research outputs found
Chiral color symmetry and possible -boson effects at the Tevatron and LHC
A gauge model with chiral color symmetry is considered and possible effects
of the color -boson octet predicted by this symmetry are investigated in
dependence on two free parameters, the mixing angle and mass
. The allowed region in the plane is found from the
Tevatron data on the cross section and forward-backward
asymmetry of the production. The mass limits
for the -boson are shown to be stronger than those for the axigluon. A
possible effect of the -boson on the production at the LHC is
discussed and the mass limits providing for the -boson evidence at the LHC
are estimated in dependence on .Comment: 11 pages, 2 figures, accepted for publication in Modern Physics
Letters
Probing a Nucleon Spin Structure at TESLA by the Real Polarized Gamma Beam
The recent proposals concerning the usage of the real polarized gamma beam,
obtained by the Compton backscattering of the laser photons off the electron
beams from either the linear or circular accelerators were considered. The
heavy quark photoproduction process giving a unique opportunity to measure
polarized gluon distribution was investigated.Comment: 16 pages, LATEX, 6 figures (EPS
About actual contradiction in geotechnical design and optimal way of it resolution
The paper describes serious and fundamental contradiction in geotechnical design, which manifested itself to the greatest extent when designing the foundations of high-rise buildings in the third quarter of the 20th century has begun to form from the late of the 19th century to the 20th years of the 20th century. Prime cause of this contradiction is in complex physical structure of soils, complex nature of their formation and, therefore, in complex form of their deformation. The article also notes the high technical and economic efficiency of using realistic physically nonlinear soil models in the design of geotechnical parts of buildings and structures. In this case such a designing is most effective when using the parameters of nonlinear models determined from data of in-situ tests. © Published under licence by IOP Publishing Ltd
PQCD Analysis of Parton-Hadron Duality
We propose an extraction of the running coupling constant of QCD in the
infrared region from experimental data on deep inelastic inclusive scattering
at Bjorken x -> 1. We first attempt a perturbative fit of the data that extends
NLO PQCD evolution to large x values and final state invariant mass, W, in the
resonance region. We include both target mass corrections and large x
resummation effects. These effects are of order O(1/Q^2), and they improve the
agreement with the Q^2 dependence of the data. Standard analyses require the
presence of additional power corrections, or dynamical higher twists, to
achieve a fully quantitative fit. Our analysis, however, is regulated by the
value of the strong coupling in the infrared region that enters through large x
resummation effects, and that can suppress, or absorb, higher twist effects.
Large x data therefore indirectly provide a measurement of this quantity that
can be compared to extractions from other observables.Comment: 10 pages, 3 figure
Experience in designing the foundations of a multi-storey building on the eluvial soils of the Urals using a model of non-linear soil deformation
The article describes an example of the first design of the foundation of a high-rise building in the Middle Urals using a non-linear soil model that reflects the real deformation properties of the soil. The use of an effective model that reflects the real deformation properties of the soil has allowed to reduce the cost of the foundation by more than two times while increasing of its reliability. © Published under licence by IOP Publishing Ltd
Parton distributions from deep-inelastic-scattering data
We perform the analysis of existing light-targets deep-inelastic-scattering
(DIS) data in the leading-order (LO), next-to-leading-order (NLO), and
next-to-next-to-leading-order (NNLO) QCD approximations and extract PDFs
simultaneously with the value of the strong coupling constant and
the high-twist contribution to the structure functions. The main theoretical
uncertainties and experimental uncertainties due to all sources of experimental
errors in data are estimated, the latter generally dominate for the obtained
PDFs. The uncertainty in Higgs boson production cross section due to errors in
PDFs is % for the LHC and varies from 2% to 10% for the Fermilab
collider under variation of the Higgs boson mass from to . For the -boson production cross section the uncertainty is % for the both colliders. The value of is obtained, while the high-twist terms do
not vanish up to the NNLO as required by comparison to data
- …