71 research outputs found
Gender differences in cardiac left ventricular mass and function: clinical and experimental observations
Background: The aim of this study was to evaluate gender-associated impact on left ventricular mass (LVM) and on left ventricular function (LVF) in humans and rats with aging. Methods: Myocyte area and collagen volume fraction (CVF) were studied in rats. LVM and LVF were evaluated in animals and humans by echocardiography and LVM index (LVMI) was obtained. Results: LVMI, myocyte area and CVF were similar in males and females of 1-month-old rats. LVMI in children was similar in both genders. In contrast, in 6-month-old rats (5 males and 5 females), LVMI (17.7 ± 0.7 mg/mm vs. 10.1 ± 0.2 mg/mm; p < 0.01), and myocyte area (4572.5 ± 72.6 μm2 vs. 3293.85 ± 57.8 μm2 , p < 0.01) were higher in male animals without differences in CVF. Men (n = 25) exhibited greater LVMI than women (n = 25) (77.4 ± 3.2 g/m2 vs. 63.3 ± 1.8 g/m2 , p < 0.01), whereas the LVF was higher in women (105.9 ± 2.9% vs. 95.3 ± 3.5%, p < 0.01). Conclusions: There is a clear gender-associated impact on LVM with aging in humans and rats. Similar CVF and LVF associated to greater myocyte size and LVM in male rats suggest a process of physiological response. However, the increase in cardiac mass without an associated improved cardiac function in men in comparison to women could likely represent a potential disadvantage in the adaptive response during growth. (Cardiol J 2014; 21, 1: x–x)Fil: Escudero, Eduardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Orlowski, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Diaz, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Pinilla, Oscar Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Ennis, Irene Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; ArgentinaFil: Aiello, Ernesto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Cardiovasculares "Dr. Horacio Eugenio Cingolani"; Argentin
Regulación fisiológica del cotransportador sodio/bicarbonato cardíaco
El objetivo del presente trabajo de tesis doctoral es estudiar y caracterizar la formación de un complejo físico-funcional entre el cotransporte sodio/bicarbonato electrogénico Na+/HCO3- (NBCe1) y la AC IX.Facultad de Ciencias Exacta
Modulation of the cardiac sodium/bicarbonate cotransporter by the renin angiotensin aldosterone system: pathophysiological consequences
The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms in the cardiomyocytes. It has been demonstrated the existence of at least two functional isoforms, one that promotes the co-influx of 1 molecule of Na+ per 1 molecule of HCO¯3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx of 1 molecule of Na+ per 2 molecules of HCO¯3 (electrogenic isoform; NBCe1). Both isoforms are important to maintain intracellular pH (pHi) and sodium concentration ([Na+]i). In addition, NBCe1 generates an anionic repolarizing current that modulates the action potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated in the modulation of almost all physiological cardiac functions and is also involved in the development and progression of cardiac diseases. It was reported that angiotensin II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits NBCe1. The activation of NBCn1 leads to an increase in pHi and [Na+]i, which indirectly, due to the stimulation of reverse mode of the Na+/Ca2+ exchanger (NCX), conduces to an increase in the intracellular Ca2+ concentration. On the other hand, the inhibition of NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In the last years, the potentially altered NBC function in pathological scenarios, as cardiac hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators. This review attempts to draw the attention on the relevant regulation of NBC activity by RAAS, since it modulates pHi and [Na+]i, which are involved in the development of cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of arrhythmic events, suggesting a potential role of NBC in cardiac diseases.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare
Gender differences in cardiac left ventricular mass and function: clinical and experimental observations
Background: The aim of this study was to evaluate gender-associated impact on left ventricular mass (LVM) and on left ventricular function (LVF) in humans and rats with aging. Methods: Myocyte area and collagen volume fraction (CVF) were studied in rats. LVM and LVF were evaluated in animals and humans by echocardiography and LVM index (LVMI) was obtained. Results: LVMI, myocyte area and CVF were similar in males and females of 1-month-old rats. LVMI in children was similar in both genders. In contrast, in 6-month-old rats (5 males and 5 females), LVMI (17.7 ± 0.7 mg/mm vs. 10.1 ± 0.2 mg/mm; p < 0.01), and myocyte area (4572.5 ± 72.6 μm2 vs. 3293.85 ± 57.8 μm2, p < 0.01) were higher in male animals without differences in CVF. Men (n = 25) exhibited greater LVMI than women (n = 25) (77.4 ± 3.2 g/m2 vs. 63.3 ± 1.8 g/m2, p < 0.01), whereas the LVF was higher in women (105.9 ± 2.9% vs. 95.3 ± 3.5%, p < 0.01). Conclusions: There is a clear gender-associated impact on LVM with aging in humans and rats. Similar CVF and LVF associated to greater myocyte size and LVM in male rats suggest a process of physiological response. However, the increase in cardiac mass without an associated improved cardiac function in men in comparison to women could likely represent a potential disadvantage in the adaptive response during growth.Facultad de Ciencias Médica
Gender differences in cardiac left ventricular mass and function: Clinical and experimental observations
Background: The aim of this study was to evaluate gender-associated impact on left ventricular mass (LVM) and on left ventricular function (LVF) in humans and rats with aging.Methods: Myocyte area and collagen volume fraction (CVF) were studied in rats. LVM and LVF were evaluated in animals and humans by echocardiography and LVM index (LVMI) was obtained.Results: LVMI, myocyte area and CVF were similar in males and females of 1-month-oldrats. LVMI in children was similar in both genders. In contrast, in 6-month-old rats (5 malesand 5 females), LVMI (17.7 ± 0.7 mg/mm vs. 10.1 ± 0.2 mg/mm; p < 0.01), and myocyte area (4572.5 ± 72.6 μm2 vs. 3293.85 ± 57.8 μm2, p < 0.01) were higher in male animals without differences in CVF. Men (n = 25) exhibited greater LVMI than women (n = 25) (77.4 ± 3.2 g/m2 vs. 63.3 ± 1.8 g/m2, p < 0.01), whereas the LVF was higher in women (105.9 ± 2.9% vs. 95.3 ± 3.5%, p < 0.01).Conclusions: There is a clear gender-associated impact on LVM with aging in humans and rats. Similar CVF and LVF associated to greater myocyte size and LVM in male rats suggest a process of physiological response. However, the increase in cardiac mass without an associated improved cardiac function in men in comparison to women could likely represent a potential disadvantage in the adaptive response during growth
Reduced sarcolemmal expression and function of the NBCe1 isoform of the Na+‒HCO¯3 cotransporter in hypertrophied cardiomyocytes of spontaneously hypertensive rats: Role of the renin-angiotensin system
Aims. Electroneutral (NBCn1) and electrogenic (NBCe1) isoforms of the Na+‒HCO¯3 cotransporter (NBC) coexist in the heart. We studied the expression and function of these isoforms in hearts of Wistar and spontaneously hypertensive rats (SHR), elucidating the direct implication of the renin-angiotensin system in the NBC regulation.
Methods and results. We used myocytes from Wistar, SHR, losartan-treated SHR (Los-SHR), and Angiotensin II (Ang II)-induced cardiac hypertrophy. We found an overexpression of NBCe1 and NBCn1 proteins in SHR that was prevented in Los-SHR. Hyperkalaemic-induced pHi alkalization was used to study selective activation of NBCe1. Despite the increase in NBCe1 expression, its activity was lower in SHR than in Wistar or Los-SHR. Similar results were found in Ang II-induced hypertrophy. A specific inhibitory antibody against NBCe1 allowed the discrimination between NBCe1 and NBCn1 activity. Whereas in SHR most of the pHi recovery was due to NBCn1 stimulation, in Wistar and Los-SHR the activity of both isoforms was equitable, suggesting that the deteriorated cardiac NBCe1 function observed in SHR is compensated by an enhanced activity of NBCn1. Using the biotin method, we observed greater level of internalized NBCe1 protein in SHR than in the non-hypertophic groups, while with immunofluorescence we localized the protein in endosomes near the nucleus only in SHR.
Conclusions. We conclude that Ang II is responsible for the impairment of the NBCe1 in hypertrophied hearts. This is due to retained transporter protein units in early endosomes. Moreover, NBCn1 activity seems to be increased in the hypertrophic myocardium of SHR, compensating impaired function of NBCe1.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare
The cardiac electrogenic sodium/bicarbonate cotransporter (NBCe1) is activated by aldosterone through the G protein-coupled receptor 30 (GPR 30)
The sodium/bicarbonate cotransporter (NBC) transports extracellular Na+ and HCO3 − into the cytoplasm upon intracellular acidosis, restoring the acidic pHi to near neutral values. Two different NBC isoforms have been described in the heart, the electroneutral NBCn1 (1Na+:1HCO3 −) and the electrogenic NBCe1 (1Na+:2HCO3 −). Certain non-genomic effects of aldosterone (Ald) were due to an orphan G protein-couple receptor 30 (GPR30). We have recently demonstrated that Ald activates GPR30 in adult rat ventricular myocytes, which transactivates the epidermal growth factor receptor (EGFR) and in turn triggers a reactive oxygen species (ROS)- and PI3K/AKT-dependent pathway, leading to the stimulation of NBC. The aim of this study was to investigate the NBC isoform involved in the Ald/GPR30-induced NBC activation. Using specific NBCe1 inhibitory antibodies (a-L3) we demonstrated that Ald does not affect NBCn1 activity. Ald was able to increase NBCe1 activity recorded in isolation. Using immunofluorescence and confocal microscopy analysis we showed in this work that both NBCe1 and GPR30 are localized in t-tubules. In conclusion, we have demonstrated that NBCe1 is the NBC isoform activated by Ald in the heart.Centro de Investigaciones Cardiovasculare
Characterization of the Na+/HCO3¯ cotransport in human neutrophils
Background: Bicarbonate transport has crucial roles in regulating intracellular pH (pHi) in a variety of cells. The purpose of this study was to evaluate its participation in the regulation of pHi in resting and stimulated human neutrophils. Methods: Freshly isolated human neutrophils acidified by an ammonium prepulse were used in this study. Results: We demonstrated that resting neutrophils have a bicarbonate transport mechanism that prevents acidification when the Na+/H+ exchanger is blocked by EIPA. Neutrophils acidified by an ammonium prepulse showed an EIPA-resistant recovery of pHi that was inhibited by the blocker of the anionic transporters SITS or the Na+/HCO3¯ cotransporter (NBC) selective inhibitor S0859, and abolished when sodium was removed from the extracellular medium. In western blot and RT-PCR analysis the expression of NBCe2 but not NBCe1 or NBCn1 was detected in neutrophils Acidified neutrophils increased the EIPA-insensitive pHi recovery rate when its activity was stimulated with fMLF/cytochalasin B. This increase in the removal of acid equivalents was insensitive to the blockade of the NADPH oxidase with DPI. Conclusion: It is concluded that neutrophils have an NBC that regulates basal pHi and is modulated by chemotactic agents.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare
Characterization of the Na+/HCO3¯ cotransport in human neutrophils
Background: Bicarbonate transport has crucial roles in regulating intracellular pH (pHi) in a variety of cells. The purpose of this study was to evaluate its participation in the regulation of pHi in resting and stimulated human neutrophils. Methods: Freshly isolated human neutrophils acidified by an ammonium prepulse were used in this study. Results: We demonstrated that resting neutrophils have a bicarbonate transport mechanism that prevents acidification when the Na+/H+ exchanger is blocked by EIPA. Neutrophils acidified by an ammonium prepulse showed an EIPA-resistant recovery of pHi that was inhibited by the blocker of the anionic transporters SITS or the Na+/HCO3¯ cotransporter (NBC) selective inhibitor S0859, and abolished when sodium was removed from the extracellular medium. In western blot and RT-PCR analysis the expression of NBCe2 but not NBCe1 or NBCn1 was detected in neutrophils Acidified neutrophils increased the EIPA-insensitive pHi recovery rate when its activity was stimulated with fMLF/cytochalasin B. This increase in the removal of acid equivalents was insensitive to the blockade of the NADPH oxidase with DPI. Conclusion: It is concluded that neutrophils have an NBC that regulates basal pHi and is modulated by chemotactic agents.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare
Generación de anticuerpos inhibitorios de la función del cotransportador sodio/bicarbonato cardíaco : Una posible futura herramienta terapéutica
El cotransportador Na+/HCO3- (NBC) cardíaco es un importante mecanismo alcalinizante encargado de regular el pH intracelular (pHi) en las células cardíacas. En el corazón se han identificado al menos 3 isoformas del NBC: 1 electroneutra (NBC3), con estequiometría 1 Na+ 1 HCO3-, y 2 electrogénicas (NBC1 y NBC4), las cuales introducen 2 moléculas de HCO3- por cada 1 de Na+. Dado que este último mecanismo genera una corriente aniónica repolarizante, su correcto funcionamiento es relevante en el control de la forma y duración del potencial de acción (PA).Centro de Investigaciones Cardiovasculare
- …