38 research outputs found

    Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum

    Get PDF
    The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.CNPqFAPES

    Terpenes as Potential Antimalarial Drugs

    Get PDF
    A fact which favors the increase in morbidity and mortality of malaria cases in the world is the resistance to chemotherapeutic agents that the parasite presents. Therefore, it is necessary to identify new potential targets specific to the parasite in order to be able to perform a rational planning. One target for the evaluation of potential antimalarial compounds is isoprenoid synthesis, which occurs via the 2-C-methyl-d -erythritol-4-phosphate pathway in Plasmodium falciparum. Several intermediaries and final products of this pathway were identified in the parasite and lead us to the conclusion that it is different from the vertebrate host. In this chapter, we describe the effect of some monoterpenes and sesquiterpenes on Plasmodium falciparum and Plasmodium berghei as potential antimalarial drugs

    In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives

    Get PDF
    4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-3H]geranylgeranyl pyrophosphate, diester 2 significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential. Copyright © 2015, American Society for Microbiology. All Rights Reserved

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage

    No full text
    Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens

    Metabolic oligosaccharide engineering of Plasmodium falciparum intraerythrocytic stages allows direct glycolipid analysis by mass spectrometry

    No full text
    A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis. (C) 2012 Elsevier B.V. All rights reserved.CONICET from ArgentinaCONICET from ArgentinaUBA from ArgentinaUBA from ArgentinaCAPESMincytCAPES-Mincy

    The isotype composition and avidity of naturally acquired anti-plasmodium falciparum antibodies: differential patterns in clinically immune africans and amazonian patients

    No full text
    This work was supported by grants from the UNDP/World Bank/World Health Organization Special Program for Research and Training in Tropical Diseases, the Program for Malaria Contrai in the Amazon (PCMAM) of the National Health Foundation (Brazilian Ministry of Health), and the Fundacao para o Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil.Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. São Paulo, SP, Brazil.Ministério da Saúde. Fundação Nacional de Saúde. Instituto Evandro Chagas. Belém, PA, Brasil.Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. São Paulo, SP, Brazil.A critical role has been proposed for cytophilic IgOl and IgOJ subclass antibodies and monocytes and macrophages in antimalarial immunity. Here we compared lhe isotype composition and avidity of naturally acquired antibodies, as measured by enzyme immunoassay against a detergent-soluble extract of Plasmodium falciparum schizonts, in clinically immune Senegalese adults (n = 33) and semi-immune, adult Amazonian patients (n = 25). Plasma were collected during an acute symptomatic P. falciparum attack and two months later, and in the absence of recrudescence or reinfection. Specific IgO, IgM, IgA, and IgO subclass antibodies were assessed. The results are summarized as follows: 1) high-avidity cytophilic antibodies predorninated in clinically immune Senegalese subjects; 2) acutely ill Amazonian patients produced high levels of low-avidity cytophilic antibody; 3) such a response was shonlived, since two months later, the concentrations of cytophilic antibodies were significantly lower; 4) however, affinity maturation of IgO antibodies was observed in Amazonian patients two months after the acute malaria attack. A considerable proponion (35-46%) of anti-P. falciparum IgOI antibodies produced by African and Amazonian patients was shown to recognize periodate-sensitive carbohydrate epitopes. The potential impact of these findings on the design and evaluation of antimalarial vaccines is discussed

    Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo

    No full text
    Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0 +/- 49.0 and 147.0 +/- 46.0 mu M, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 mu M limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania. (C) 2009 Elsevier Masson SAS. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2008/51256-7]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2005/59881-0]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNP
    corecore