49 research outputs found
A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids
This paper describes the main features of a pioneering unsteady solver for
simulating ideal two-fluid plasmas on unstructured grids, taking profit of
GPGPU (General-purpose computing on graphics processing units). The code, which
has been implemented within the open source COOLFluiD platform, is implicit,
second-order in time and space, relying upon a Finite Volume method for the
spatial discretization and a three-point backward Euler for the time
integration. In particular, the convective fluxes are computed by a multi-fluid
version of the AUSM+up scheme for the plasma equations, in combination with a
modified Rusanov scheme with tunable dissipation for the Maxwell equations.
Source terms are integrated with a one-point rule, using the cell-centered
value. Some critical aspects of the porting to GPU's are discussed, as well as
the performance of two open source linear system solvers (i.e. PETSc,
PARALUTION). The code design allows for computing both flux and source terms on
the GPU along with their Jacobian, giving a noticeable decrease in the
computational time in comparison with the original CPU-based solver. The code
has been tested in a wide range of mesh sizes and in three different systems,
each one with a different GPU. The increased performance (up to 14x) is
demonstrated in two representative 2D benchmarks: propagation of circularly
polarized waves and the more challenging Geospace Environmental Modeling (GEM)
magnetic reconnection challenge.Comment: 22 pages, 7 figure
Recommended from our members
The Camino Verde intervention in Nicaragua, 2004-2012.
UNLABELLED: Camino Verde (the Green Way) is an evidence-based community mobilisation tool for prevention of dengue and other mosquito-borne viral diseases. Its effectiveness was demonstrated in a cluster-randomised controlled trial conducted in 2010-2013 in Nicaragua and Mexico. The Nicaraguan arm of the trial was preceded, from 2004 to 2008, by a feasibility study that provided valuable lessons and trained facilitators for the trial itself. Here, guided by the Template for Intervention Description and Replication (TIDieR), we describe the Camino Verde intervention in Nicaragua, presenting its rationale, its time and location, activities, materials used, the main actors, modes of delivery, how it was tailored to encourage community engagement, modifications made from the feasibility study to the trial itself, and how fidelity to the process originally designed was maintained. We also present information on costs and discuss the place of this study within the literature on implementation science. TRIAL REGISTRATION: ISRCTN27581154
Recommended from our members
Mobilising communities for Aedes aegypti control: the SEPA approach.
UNLABELLED: Camino Verde (the Green Way) is an evidence-based community mobilisation tool for prevention of dengue and other mosquito-borne viral diseases. Its effectiveness was demonstrated in a cluster-randomised controlled trial conducted in 2010-2013 in Nicaragua and Mexico. The common approach that brought functional consistency to the Camino Verde intervention in both Mexico and Nicaragua is Socialisation of Evidence for Participatory Action (SEPA). In this article, we explain the SEPA concept and its theoretical origins, giving examples of its previous application in different countries and contexts. We describe how the approach was used in the Camino Verde intervention, with details that show commonalities and differences in the application of the approach in Mexico and Nicaragua. We discuss issues of cost, replicability and sustainability, and comment on which components of the intervention were most important to its success. In complex interventions, multiple components act in synergy to produce change. Among key factors in the success of Camino Verde were the use of community volunteers called brigadistas, the house-to-house visits they conducted, the use of evidence derived from the communities themselves, and community ownership of the undertaking. Communities received the intervention by random assignment; dengue was not necessarily their greatest concern. The very nature of the dengue threat dictated many of the actions that needed to be taken at household and neighbourhood levels to control it. But within these parameters, communities exercised a large degree of control over the intervention and displayed considerable ingenuity in the process. TRIAL REGISTRATION: ISRCTN27581154
Numerical challenges in the simulation of 1D bounded low-temperature plasmas with charge separation in various collisional regimes
We study a 1D geometry of a plasma confined between two conducting floating walls with applications to laboratory plasmas. These plasmas are characterized by a quasi-neutral bulk that is joined to the wall by a thin boundary layer called sheath that is positively charged. Although analytical solutions are available in the sheath and the pre-sheath, joining the two areas by one analytical solution is still an open problem which requires the numerical resolution of the fluid equations coupled to Poisson equation. Current numerical schemes use high-order discretizations to correctly capture the electron current in the sheath, presenting unsatisfactory results in the boundary layer and they are not adapted to all the possible collisional regimes. In this work, we identify the main numerical challenges that arise when attempting the simulations of such configuration and we propose explanations for the observed phenomena via numerical analysis. We propose a numerical scheme with controlled diffusion as well as new discrete boundary conditions that address the identified issues
Multi-fluid modeling of magnetic reconnection in astrophysical and laboratory plasmas
status: publishe
CFD for turbulence: from fundamentals to geophysics and astrophysics
International audienceOver the years, the combination of computational fluid dynamics (CFD) and theoretical models have critically contributed to improving our understanding of the nature of turbulent flows. In this paper, we review the role of CFD in the study of turbulence through both direct numerical simulations and the resolution of statistical multi-scale theories. With a historical perspective, we will discuss the evolution of the numerical modeling of turbulence from the first numerical experiments as proposed by Orszag and Patterson [1] to complex geophysical and plasma simulations where body forces such as Coriolis, the buoyancy force, or the Lorentz force can introduce strong anisotropies. Looking beyond the horizon, we address the future challenges for CFD and turbulence theorists with the prospect of exascale supercomputing