23 research outputs found

    The WOPR family protein Ryp1 is a key regulator of gene expression, development, and virulence in the thermally dimorphic fungal pathogen Coccidioides posadasii

    No full text
    Coccidioides spp. are mammalian fungal pathogens endemic to the Southwestern US and other desert regions of Mexico, Central and South America, with the bulk of US infections occurring in California and Arizona. In the soil, Coccidioides grows in a hyphal form that differentiates into 3-5 micron asexual spores (arthroconidia). When arthroconidia are inhaled by mammals they undergo a unique developmental transition from polar hyphal growth to isotropic expansion with multiple rounds of nuclear division, prior to segmentation, forming large spherules filled with endospores. Very little is understood about the molecular basis of spherule formation. Here we characterize the role of the conserved transcription factor Ryp1 in Coccidioides development. We show that Coccidioides Δryp1 mutants have altered colony morphology under hypha-promoting conditions and are unable to form mature spherules under spherule-promoting conditions. We analyze the transcriptional profile of wildtype and Δryp1 mutant cells under hypha- and spherule-promoting conditions, thereby defining a set of hypha- or spherule-enriched transcripts ("morphology-regulated"genes) that are dependent on Ryp1 for their expression. Forty percent of morphology-regulated expression is Ryp1-dependent, indicating that Ryp1 plays a dual role in both hyphal and spherule development. Ryp1-dependent transcripts include key virulence factors such as SOWgp, which encodes the spherule outer wall glycoprotein. Concordant with its role in spherule development, we find that the Δryp1 mutant is completely avirulent in the mouse model of coccidioidomycosis, indicating that Ryp1-dependent pathways are essential for the ability of Coccidioides to cause disease. Vaccination of C57BL/6 mice with live Δryp1 spores does not provide any protection from lethal C. posadasii intranasal infection, consistent with our findings that the Δryp1 mutant fails to make mature spherules and likely does not express key antigens required for effective vaccination. Taken together, this work identifies the first transcription factor that drives mature spherulation and virulence in Coccidioides. © 2022 Mandel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Genomic and Population Analyses of the Mating Type Loci in Coccidioides Species Reveal Evidence for Sexual Reproduction and Gene Acquisition▿ †

    No full text
    Coccidioides species, the fungi responsible for the valley fever disease, are known to reproduce asexually through the production of arthroconidia that are the infectious propagules. The possible role of sexual reproduction in the survival and dispersal of these pathogens is unexplored. To determine the potential for mating of Coccidioides, we analyzed genome sequences and identified mating type loci characteristic of heterothallic ascomycetes. Coccidioides strains contain either a MAT1-1 or a MAT1-2 idiomorph, which is 8.1 or 9 kb in length, respectively, the longest reported for any ascomycete species. These idiomorphs contain four or five genes, respectively, more than are present in the MAT loci of most ascomycetes. Along with their cDNA structures, we determined that all genes in the MAT loci are transcribed. Two genes frequently found in common sequences flanking MAT idiomorphs, APN2 and COX13, are within the MAT loci in Coccidioides, but the MAT1-1 and MAT1-2 copies have diverged dramatically from each other. Data indicate that the acquisition of these genes in the MAT loci occurred prior to the separation of Coccidioides from Uncinocarpus reesii. An analysis of 436 Coccidioides isolates from patients and the environment indicates that in both Coccidioides immitis and C. posadasii, there is a 1:1 distribution of MAT loci, as would be expected for sexually reproducing species. In addition, an analysis of isolates obtained from 11 soil samples demonstrated that at three sampling sites, strains of both mating types were present, indicating that compatible strains were in close proximity in the environment

    Coccidioides posadasii Contains a Single 1,3-β-Glucan Synthase Gene That Appears To Be Essential for Growth

    No full text
    1,3-β-Glucan synthase is responsible for the synthesis of β-glucan, an essential cell wall structural component in most fungi. We sought to determine whether Coccidioides posadasii possesses genes homologous to known fungal FKS genes that encode the catalytic subunit of 1,3-β-glucan synthase. A single gene, designated FKS1, was identified, and examination of its predicted protein product showed a high degree of conservation with Fks proteins from other filamentous fungi. FKS1 is expressed at similar levels in mycelia and early spherulating cultures, and expression decreases as the spherules mature. We used Agrobacterium-mediated transformation to create strains that harbor ΔFKS1::hygB, a null allele of FKS1, and hypothesize that Fks1p function is essential, due to our inability to purify this allele away from a complementing wild-type FKS1 allele in a heterokaryotic strain. The heterokaryon appears normal with respect to growth rate and arthroconidium production; however, microscopic examination of strains with ΔFKS1::hygB alleles revealed abnormal swelling of hyphal elements

    Accelerating News Issue 18

    No full text
    Cassava (Manihot esculenta) is an important tropical subsistence crop that is severely affected by cassava brown streak disease (CBSD) in East Africa. The disease is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Both have a (+)-sense single-stranded RNA genome with a 5' covalently-linked viral protein, which functionally resembles the cap structure of mRNA, binds to eukaryotic translation initiation factor 4E (eIF4E) or its analogues, and then enable the translation of viral genomic RNA in host cells. To characterize cassava eIF4Es and their potential role in CBSD tolerance and susceptibility, we cloned five eIF4E transcripts from cassava (accession TMS60444). Sequence analysis indicated that the cassava eIF4E family of proteins consisted of one eIF4E, two eIF(iso) 4E, and two divergent copies of novel cap-binding proteins (nCBPs). Our data demonstrated experimentally the coding of these five genes as annotated in the published cassava genome and provided additional evidence for refined annotations. Illumina resequencing data of the five eIF4E genes were analyzed from 14 cassava lines tolerant or susceptible to CBSD. Abundant single nucleotide polymorphisms (SNP) and biallelic variations were observed in the eIF4E genes; however, most of the SNPs were located in the introns and non-coding regions of the exons. Association studies of non-synonymous SNPs revealed no significant association between any SNP of the five eIF4E genes and the tolerance or susceptibility to CBSD. However, two SNPs in two genes were weakly associated with the CBSD responses but had no direct causal-effect relationship. SNPs in an intergenic region upstream of eIF4E_me showed a surprising strong association with CBSD responses. Digital expression profile analysis showed differential expression of different eIF4E genes but no significant difference in gene expression was found between susceptible and tolerant cassava accessions despite the association of the intergenic SNPs with CBSD responses.Bill and Melinda Gates Foundation [OPP1068522]; Natural Science Foundation of China [31461143016]; Genus plcOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Vaccines to Prevent Coccidioidomycosis: A Gene-Deletion Mutant of Coccidioides Posadasii as a Viable Candidate for Human Trials

    No full text
    Coccidioidomycosis is an endemic fungal infection that is reported in up to 20,000 persons per year and has an economic impact close to $1.5 billion. Natural infection virtually always confers protection from future exposure, and this suggests that a preventative vaccine strategy is likely to succeed. We here review progress toward that objective. There has been ongoing research to discover a coccidioidal vaccine over the past seven decades, including one phase III clinical trial, but for reasons of either efficacy or feasibility, a safe and effective vaccine has not yet been developed. This review first summarizes the past research to develop a coccidioidal vaccine. It then details the evidence that supports a live, gene-deletion vaccine candidate as suitable for further development as both a veterinary and a human clinical product. Finally, a plausible vaccine development plan is described which would be applicable to this vaccine candidate and also useful to other future candidates. The public health and economic impact of coccidioidomycosis fully justifies a public private partnership for vaccine development, and the development of a vaccine for this orphan disease will likely require some degree of public funding

    RT-PCR amplification of five cassava eIF4E ORFs with gene-specific primers.

    No full text
    <p>Total RNA was extracted from TMS60444 cassava line. The first-strand cDNA was synthesized using SuperScript<sup>â„¢</sup> III Reverse Transcriptase (Invitrogen) and PCR was performed using Phusion High-Fidelity DNA polymerase (New England Biolabs) and primers indicated in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181998#pone.0181998.t001" target="_blank">Table 1</a>. Lane 1: DNA marker; Lane 2: 016601 CDS amplified with primers 016601F and 016601R; Lane 3: 016620 CDS amplified with primers 016620F and 016620R; Lane 4: 015501 CDS amplified with 015501F and 015501R, Lane 5: 013223 CDS amplified with primers 013223lF and 013223R, Lane 6, 013223 CDS amplified with primers 013223sF and 013223R; Lane 7: 013732 CDS amplified with 013732lF and 013732R; Lane 8: 013732 CDS amplified with 013732sF and 013732R; and Lane 9: negative water control.</p
    corecore