34 research outputs found

    Habitable Climate Scenarios for Proxima Centauri b With a Dynamic Ocean

    Full text link
    The nearby exoplanet Proxima Centauri b will be a prime future target for characterization, despite questions about its retention of water. Climate models with static oceans suggest that an Earth-like Proxima b could harbor a small dayside region of surface liquid water at fairly warm temperatures despite its weak instellation. We present the first 3-dimensional climate simulations of Proxima b with a dynamic ocean. We find that an ocean-covered Proxima b could have a much broader area of surface liquid water but at much colder temperatures than previously suggested, due to ocean heat transport and depression of the freezing point by salinity. Elevated greenhouse gas concentrations do not necessarily produce more open ocean area because of possible dynamic regime transitions. For an evolutionary path leading to a highly saline present ocean, Proxima b could conceivably be an inhabited, mostly open ocean planet dominated by halophilic life. For an ocean planet in 3:2 spin-orbit resonance, a permanent tropical waterbelt exists for moderate eccentricity. Simulations of Proxima Centauri b may also be a model for the habitability of planets receiving similar instellation from slightly cooler or warmer stars, e.g., in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.Comment: Submitted to Astrobiology; 38 pages, 12 figures, 5 table

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Full text link
    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a 3-Dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of Solar System and exoplanetary terrestrial planets. Its parent model, known as ModelE2 (Schmidt et al. 2014), is used to simulate modern and 21st Century Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (slowly rotating to more rapidly rotating than modern Earth, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the Solar System such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents we can then expand its capabilities further to those exoplanetary rocky worlds that have been discovered in the past and those to be discovered in the future. We discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.Comment: Revisions since previous draft. Now submitted to Astrophysical Journal Supplement Serie

    Venus: The First Habitable World of Our Solar System?

    Get PDF
    A great deal of effort in the search for life off-Earth in the past 20+ years has focused on Mars via a plethora of space and ground based missions. While there is good evidence that surface liquid water existed on Mars in substantial quantities, it is not clear how long such water existed. Most studies point to this water existing billions of years ago. However,those familiar with the Faint Young Sun hypothesis for Earth will quickly realize that this problem is even more pronounced for Mars. In this context recent simulations have been completed with the GISS 3-D GCM (1) of paleo Venus (approx. 3 billion years ago) when the sun was approx. 25 less luminous than today. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water. Previous work has also provided bounds on how much water Venus could have had using measured DH ratios. It is possible that less assumptions have to be made to make Venus an early habitable world than have to be made for Mars, even thoughVenus is a much tougher world on which to confirm this hypothesis

    Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO<sub>2</sub>

    Get PDF
    Biophysical vegetation responses to elevated atmospheric carbon dioxide (CO(2)) affect regional hydroclimate through two competing mechanisms. Higher CO(2) increases leaf area (LAI), thereby increasing transpiration and water losses. Simultaneously, elevated CO(2) reduces stomatal conductance and transpiration, thereby increasing rootzone soil moisture. Which mechanism dominates in the future is highly uncertain, partly because these two processes are difficult to explicitly separate within dynamic vegetation models. We address this challenge by using the GISS ModelE global climate model to conduct a novel set of idealized 2×CO(2) sensitivity experiments to: evaluate the total vegetation biophysical contribution to regional climate change under high CO(2); and quantify the separate contributions of enhanced LAI and reduced stomatal conductance to regional hydroclimate responses. We find that increased LAI exacerbates soil moisture deficits across the sub‐tropics and more water‐limited regions, but also attenuates warming by ∼0.5–1°C in the US Southwest, Central Asia, Southeast Asia, and northern South America. Reduced stomatal conductance effects contribute ∼1°C of summertime warming. For some regions, enhanced LAI and reduced stomatal conductance produce nonlinear and either competing or mutually amplifying hydroclimate responses. In northeastern Australia, these effects combine to exacerbate radiation‐forced warming and contribute to year‐round water limitation. Conversely, at higher latitudes these combined effects result in less warming than would otherwise be predicted due to nonlinear responses. These results highlight substantial regional variation in CO(2)‐driven vegetation responses and the importance of improving model representations of these processes to better quantify regional hydroclimate impacts
    corecore